SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delhomme Nicolas) "

Sökning: WFRF:(Delhomme Nicolas)

  • Resultat 1-10 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akhter, Shirin, et al. (författare)
  • Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 236:5, s. 1951-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies. 
  •  
2.
  • Akhter, Shirin, et al. (författare)
  • Integrative Analysis of Three RNA Sequencing Methods Identifies Mutually Exclusive Exons of MADS-Box Isoforms During Early Bud Development in Picea abies
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister Glade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this subclade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.
  •  
3.
  • Akhter, Shirin, et al. (författare)
  • Transcriptome studies of the early cone-setting acrocona mutant provide evidence for a functional conservation of the age-dependent flowering pathway between angiosperms and gymnosperms.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • All seed plants go through a juvenile period before they initiate seed- and pollen-bearing organs and reproduce. Reproductive phase-change is well characterized in angiosperm model species, but much less well described in gymnosperms. Here, we utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies; a representative of the gymnosperm lineage. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. By sequence analysis of mRNA and microRNA transcripts, we demonstrate that orthologous components of the Age-dependent flowering pathway are active at the time of cone initiation. We show that a member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL7, is active in reproductive meristems, whereas a putative negative regulator of PaSPL7, microRNA156 is upregulated in vegetative meristem. By allele-specific assembly, we also identify a short nucleotide polymorphism (SNP) in the miRNA156 binding of PaSPL7. By genotyping a segregating population of inbred acrocona trees, we show a clear co-segregation between the early cone-setting phenotype and trees homozygous for the SNP. Hence, the data presented demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating cone-setting in the conifer P. abies.
  •  
4.
  • André, Domenique, et al. (författare)
  • FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees
  • 2022
  • Ingår i: Current Biology. - : Cell Press. - 0960-9822 .- 1879-0445. ; 32:13, s. 2988-2996.e4
  • Tidskriftsartikel (refereegranskat)abstract
    • In temperate and boreal regions, perennials adapt their annual growth cycle to the change of seasons. These adaptations ensure survival in harsh environmental conditions, allowing growth at different latitudes and altitudes, and are therefore tightly regulated. Populus tree species cease growth and form terminal buds in autumn when photoperiod falls below a certain threshold.1 This is followed by establishment of dormancy and cold hardiness over the winter. At the center of the photoperiodic pathway in Populus is the gene FLOWERING LOCUS T2 (FT2), which is expressed during summer and harbors significant SNPs in its locus associated with timing of bud set.1–4 The paralogous gene FT1, on the other hand, is hyper-induced in chilling buds during winter.3,5 Even though its function is so far unknown, it has been suggested to be involved in the regulation of flowering and the release of winter dormancy.3,5 In this study, we employ CRISPR-Cas9-mediated gene editing to individually study the function of the FT-like genes in Populus trees. We show that while FT2 is required for vegetative growth during spring and summer and regulates the entry into dormancy, expression of FT1 is absolutely required for bud flush in spring. Gene expression profiling suggests that this function of FT1 is linked to the release of winter dormancy rather than to the regulation of bud flush per se. These data show how FT duplication and sub-functionalization have allowed Populus trees to regulate two completely different and major developmental control points during the yearly growth cycle.
  •  
5.
  • Bag, Pushan, 1993-, et al. (författare)
  • An atlas of the Norway spruce needle seasonal transcriptome
  • 2021
  • Ingår i: The Plant Journal. - : John Wiley & Sons. - 0960-7412 .- 1365-313X. ; 108:6, s. 1815-1829
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal conifers possess a tremendous ability to survive and remain evergreen during harsh winter conditions and resume growth during summer. This is enabled by coordinated regulation of major cellular functions at the level of gene expression, metabolism, and physiology. Here we present a comprehensive characterization of the annual changes in the global transcriptome of Norway spruce (Picea abies) needles as a resource to understand needle development and acclimation processes throughout the year. In young, growing needles (May 15 until June 30), cell walls, organelles, etc., were formed, and this developmental program heavily influenced the transcriptome, explained by over-represented Gene Ontology (GO) categories. Later changes in gene expression were smaller but four phases were recognized: summer (July–August), autumn (September–October), winter (November–February), and spring (March–April), where over-represented GO categories demonstrated how the needles acclimated to the various seasons. Changes in the seasonal global transcriptome profile were accompanied by differential expression of members of the major transcription factor families. We present a tentative model of how cellular activities are regulated over the year in needles of Norway spruce, which demonstrates the value of mining this dataset, accessible in ConGenIE together with advanced visualization tools.
  •  
6.
  • Bai, Bing, et al. (författare)
  • SeedTransNet : a directional translational network revealing regulatory patterns during seed maturation and germination
  • 2023
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 74:7, s. 2416-2432
  • Tidskriftsartikel (refereegranskat)abstract
    • Seed maturation is the developmental process that prepares the embryo for the desiccated waiting period before germination. It is associated with a series of physiological changes leading to the establishment of seed dormancy, seed longevity, and desiccation tolerance. We studied translational changes during seed maturation and observed a gradual reduction in global translation during seed maturation. Transcriptome and translatome profiling revealed specific reduction in the translation of thousands of genes. By including previously published data on germination and seedling establishment, a regulatory network based on polysome occupancy data was constructed: SeedTransNet. Network analysis predicted translational regulatory pathways involving hundreds of genes with distinct functions. The network identified specific transcript sequence features suggesting separate translational regulatory circuits. The network revealed several seed maturation-associated genes as central nodes, and this was confirmed by specific seed phenotypes of the respective mutants. One of the regulators identified, an AWPM19 family protein, PM19-Like1 (PM19L1), was shown to regulate seed dormancy and longevity. This putative RNA-binding protein also affects the translational regulation of its target mRNA, as identified by SeedTransNet. Our data show the usefulness of SeedTransNet in identifying regulatory pathways during seed phase transitions.
  •  
7.
  • Barbus, Sebastian, et al. (författare)
  • Differential retinoic acid signaling in tumors of long- and short-term glioblastoma survivors.
  • 2011
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 103:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the prognosis of most glioblastoma patients is poor, 3%-5% patients show long-term survival of 36 months or longer after diagnosis. To study the differences in activation of biochemical pathways, we performed mRNA and protein expression analyses of primary glioblastoma tissues from 11 long-term survivors (LTS; overall survival ≥ 36 months) and 12 short-term survivors (STS; overall survival ≤ 6 months). The mRNA expression ratio of the retinoic acid transporters fatty acid-binding protein 5 (FABP5) and cellular retinoic acid-binding protein 2 (CRABP2), which regulate the differential delivery of retinoic acid to either antioncogenic retinoic acid receptors or prooncogenic nuclear receptor peroxisome proliferator-activated receptor delta, was statistically significantly higher in the tumor tissues of STS than those of LTS (median ratio in STS tumors = 3.64, 10th-90th percentile = 1.43-4.54 vs median ratio in LTS tumors = 1.42, 10th-90th percentile = -0.98 to 2.59; P < .001). High FABP5 protein expression in STS tumors was associated with highly proliferating tumor cells and activation of 3-phosphoinositide-dependent protein kinase-1 and v-akt murine thymoma viral oncogene homolog. The data suggest that retinoic acid signaling activates different targets in glioblastomas from LTS and STS. All statistical tests were two-sided.
  •  
8.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
9.
  • Blokhina, Olga, et al. (författare)
  • Ray Parenchymal Cells Contribute to Lignification of Tracheids in Developing Xylem of Norway Spruce1[OPEN]
  • 2019
  • Ingår i: Plant Physiology. - Rockville : American Society of Plant Biologists. - 0032-0889 .- 1532-2548. ; 181:4, s. 1552-1572
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparative transcriptomic study and a single-cell metabolome analysis were combined to determine whether parenchymal ray cells contribute to the biosynthesis of monolignols in the lignifying xylem of Norway spruce (Picea abies). Ray parenchymal cells may function in the lignification of upright tracheids by supplying monolignols. To test this hypothesis, parenchymal ray cells and upright tracheids were dissected with laser-capture microdissection from tangential cryosections of developing xylem of spruce trees. The transcriptome analysis revealed that among the genes involved in processes typical for vascular tissues, genes encoding cell wall biogenesis-related enzymes were highly expressed in both developing tracheids and ray cells. Interestingly, most of the shikimate and monolignol biosynthesis pathway-related genes were equally expressed in both cell types. Nonetheless, 1,073 differentially expressed genes were detected between developing ray cells and tracheids, among which a set of genes expressed only in ray cells was identified. In situ single cell metabolomics of semi-intact plants by picoliter pressure probe-electrospray ionization-mass spectrometry detected monolignols and their glycoconjugates in both cell types, indicating that the biosynthetic route for monolignols is active in both upright tracheids and parenchymal ray cells. The data strongly support the hypothesis that in developing xylem, ray cells produce monolignols that contribute to lignification of tracheid cell walls. Transcriptomics combined with single-cell metabolomics give new information on the role of rays in lignification of developing xylem in Norway spruce.
  •  
10.
  • Bonn, Stefan, et al. (författare)
  • Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromatin modifications are associated with many aspects of gene expression, yet their role in cellular transitions during development remains elusive. Here, we use a new approach to obtain cell type-specific information on chromatin state and RNA polymerase II (Pol II) occupancy within the multicellular Drosophila melanogaster embryo. We directly assessed the relationship between chromatin modifications and the spatio-temporal activity of enhancers. Rather than having a unique chromatin state, active developmental enhancers show heterogeneous histone modifications and Pol II occupancy. Despite this complexity, combined chromatin signatures and Pol II presence are sufficient to predict enhancer activity de novo. Pol II recruitment is highly predictive of the timing of enhancer activity and seems dependent on the timing and location of transcription factor binding. Chromatin modifications typically demarcate large regulatory regions encompassing multiple enhancers, whereas local changes in nucleosome positioning and Pol II occupancy delineate single active enhancers. This cell type-specific view identifies dynamic enhancer usage, an essential step in deciphering developmental networks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 68
Typ av publikation
tidskriftsartikel (55)
annan publikation (12)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt/konstnärligt (13)
Författare/redaktör
Delhomme, Nicolas (66)
Street, Nathaniel, 1 ... (11)
Nilsson, Ove (8)
Schiffthaler, Bastia ... (8)
Street, Nathaniel R. (7)
Sundberg, Björn (5)
visa fler...
Jansson, Stefan (5)
Keech, Olivier (5)
Hvidsten, Torgeir R. ... (4)
Tuominen, Hannele (4)
Grabherr, Manfred (4)
Schiffthaler, Bastia ... (4)
Hvidsten, Torgeir R. (4)
Mellerowicz, Ewa (4)
Moritz, Thomas (3)
Garcia Gil, Rosario (3)
Street, Nathaniel R. ... (3)
Zhang, Bo (3)
Jansson, Stefan, 195 ... (3)
Lindén, Pernilla (3)
Brouwer, Bastiaan (3)
Akhter, Shirin (3)
Nordal, Veronika (3)
Kretzschmar, Warren ... (3)
Emanuelsson, Olof (3)
Sundström, Jens (3)
Robinson, Kathryn M, ... (3)
Lichter, Peter (3)
Bhalerao, Rishikesh ... (3)
Gorzsás, András (3)
Vergara, Alexander (2)
Ingvarsson, Pär K (2)
Niittylä, Totte (2)
Lundeberg, Joakim (2)
Šimura, Jan (2)
Novák, Ondřej (2)
Ljung, Karin (2)
Albrectsen, Benedict ... (2)
Gardeström, Per (2)
Schmid, Markus (2)
Svärd, Staffan (2)
Westrin, Karl Johan, ... (2)
Åbrink, Magnus (2)
Nystedt, Björn (2)
Arvestad, Lars (2)
Sundh, John (2)
Vain, Thomas (2)
Bag, Pushan, 1993- (2)
Hinas, Andrea (2)
Sabouri, Nasim (2)
visa färre...
Lärosäte
Umeå universitet (59)
Sveriges Lantbruksuniversitet (41)
Uppsala universitet (8)
Kungliga Tekniska Högskolan (7)
Stockholms universitet (4)
Chalmers tekniska högskola (1)
visa fler...
RISE (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (68)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (65)
Lantbruksvetenskap (21)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy