SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deller A.) ;lar1:(su)"

Sökning: WFRF:(Deller A.) > Stockholms universitet

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jelic, V., et al. (författare)
  • Initial LOFAR observations of epoch of reionization windows II. Diffuse polarized emission in the ELAIS-N1 field
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568, s. A101-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications or extracting of the cosmological 21 cm signal from the LOw-Frequency ARray - Epoch of Reionization (LOFAR-EoR) data Methods. We used the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. Results. The brightness temperature of the detected Galactic emission is on average similar to 4 K in polarized intensity and covers the range from -10 to +13 rad m(-2) in Faraday depth, The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to approximate to 1.5%. There is no indication of diffuse emission in total intensity in the interferometric data. in line with results at higher frequencies Conclusions. The wide frequency range. high angular resolution, and high sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of similar to 1-2 rad m(-2) in Faraday depth. The different polarized patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarized foregrounds is a serious complication for epoch of reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%.
  •  
2.
  • Vedantham, H. K., et al. (författare)
  • Lunar occultation of the diffuse radio sky : LOFAR measurements between 35 and 80 MHz
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 450, s. 2291-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 < ν < 80 MHz since it is ‘colder’ than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the centre of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than 80 dB to achieve an RFI temperature <1 mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than 20 mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds 20 mK if the aggregate scattering cross-section of visible satellites exceeds 175 m2 at 800 km height, or 15 m2 at 400 km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10–15 per cent level). Further refinement of our technique may yield constraints on the redshifted global 21 cm signal from Cosmic Dawn (40 > z > 12) and the Epoch of Reionization (12 > z > 5).
  •  
3.
  • Andreoni, I., et al. (författare)
  • Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (similar to 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
  •  
4.
  • Morabito, L., et al. (författare)
  • Sub-arcsecond imaging with the International LOFAR Telescope: I. Foundational calibration strategy and pipeline
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ∼2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ∼1.5° away, while phase solution transferral works well over ∼1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ∼0.3″ ×0.2″ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ∼80-300 μJy bm-1 image rms noise, which is dependent on the distance from the phase centre; typical values are ∼90 μJy bm-1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ∼ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit.
  •  
5.
  • Amole, C., et al. (författare)
  • Silicon vertex detector upgrade in the ALPHA experiment
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 732, s. 134-136
  • Tidskriftsartikel (refereegranskat)abstract
    • The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.
  •  
6.
  • Amole, C., et al. (författare)
  • The ALPHA antihydrogen trapping apparatus
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 735, s. 319-340
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.
  •  
7.
  • Amole, C., et al. (författare)
  • Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:4, s. 043510-
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.
  •  
8.
  • Amole, C., et al. (författare)
  • Resonant quantum transitions in trapped antihydrogen atoms
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 483:7390, s. 439-U86
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured(1) and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and-by comparison with measurements on its antimatter counterpart, antihydrogen-the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state(2,3) of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped(4-6) in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
  •  
9.
  • Amole, C., et al. (författare)
  • In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap
  • 2014
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 16, s. 013037-
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.
  •  
10.
  • Amole, C., et al. (författare)
  • Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
  • 2012
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 14, s. 015010-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilate. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy