SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delorme R) ;pers:(Leboyer M.)"

Sökning: WFRF:(Delorme R) > Leboyer M.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weiner, D. J., et al. (författare)
  • Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:7, s. 978-
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways.
  •  
2.
  • Anney, R. J. L., et al. (författare)
  • Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia
  • 2017
  • Ingår i: Molecular Autism. - : Springer Science and Business Media LLC. - 2040-2392. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) < 1.15). Methods: We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls). Results: We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P= 9 x10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23. Conclusions: This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental- related genes such as EXT1, ASTN2, MACROD2, and HDAC4.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Mercati, O, et al. (författare)
  • CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders.
  • 2017
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6(W923X) was transmitted by a mother to her two sons with ASD and one variant CNTN6(P770L) was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.Molecular Psychiatry advance online publication, 10 May 2016; doi:10.1038/mp.2016.61.
  •  
9.
  • Pilorge, M, et al. (författare)
  • Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism.
  • 2016
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 21:7, s. 936-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized by marked genetic heterogeneity. Recent studies of rare structural and sequence variants have identified hundreds of loci involved in ASD, but our knowledge of the overall genetic architecture and the underlying pathophysiological mechanisms remains incomplete. Glycine receptors (GlyRs) are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system but exert an excitatory action in immature neurons. GlyRs containing the α2 subunit are highly expressed in the embryonic brain, where they promote cortical interneuron migration and the generation of excitatory projection neurons. We previously identified a rare microdeletion of the X-linked gene GLRA2, encoding the GlyR α2 subunit, in a boy with autism. The microdeletion removes the terminal exons of the gene (GLRA2(Δex8-9)). Here, we sequenced 400 males with ASD and identified one de novo missense mutation, p.R153Q, absent from controls. In vitro functional analysis demonstrated that the GLRA2(Δex8)(-)(9) protein failed to localize to the cell membrane, while the R153Q mutation impaired surface expression and markedly reduced sensitivity to glycine. Very recently, an additional de novo missense mutation (p.N136S) was reported in a boy with ASD, and we show that this mutation also reduced cell-surface expression and glycine sensitivity. Targeted glra2 knockdown in zebrafish induced severe axon-branching defects, rescued by injection of wild type but not GLRA2(Δex8-9) or R153Q transcripts, providing further evidence for their loss-of-function effect. Glra2 knockout mice exhibited deficits in object recognition memory and impaired long-term potentiation in the prefrontal cortex. Taken together, these results implicate GLRA2 in non-syndromic ASD, unveil a novel role for GLRA2 in synaptic plasticity and learning and memory, and link altered glycinergic signaling to social and cognitive impairments.Molecular Psychiatry advance online publication, 15 September 2015; doi:10.1038/mp.2015.139.
  •  
10.
  • Pagan, C, et al. (författare)
  • The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders.
  • 2014
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated whole-blood serotonin and decreased plasma melatonin (a circadian synchronizer hormone that derives from serotonin) have been reported independently in patients with autism spectrum disorders (ASDs). Here, we explored, in parallel, serotonin, melatonin and the intermediate N-acetylserotonin (NAS) in a large cohort of patients with ASD and their relatives. We then investigated the clinical correlates of these biochemical parameters. Whole-blood serotonin, platelet NAS and plasma melatonin were assessed in 278 patients with ASD, their 506 first-degree relatives (129 unaffected siblings, 199 mothers and 178 fathers) and 416 sex- and age-matched controls. We confirmed the previously reported hyperserotonemia in ASD (40% (35-46%) of patients), as well as the deficit in melatonin (51% (45-57%)), taking as a threshold the 95th or 5th percentile of the control group, respectively. In addition, this study reveals an increase of NAS (47% (41-54%) of patients) in platelets, pointing to a disruption of the serotonin-NAS-melatonin pathway in ASD. Biochemical impairments were also observed in the first-degree relatives of patients. A score combining impairments of serotonin, NAS and melatonin distinguished between patients and controls with a sensitivity of 80% and a specificity of 85%. In patients the melatonin deficit was only significantly associated with insomnia. Impairments of melatonin synthesis in ASD may be linked with decreased 14-3-3 proteins. Although ASDs are highly heterogeneous, disruption of the serotonin-NAS-melatonin pathway is a very frequent trait in patients and may represent a useful biomarker for a large subgroup of individuals with ASD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy