SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delorme R) ;pers:(Samland M.)"

Sökning: WFRF:(Delorme R) > Samland M.

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
2.
  • Desidera, S., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) I. Sample definition and target characterization
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys.Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE.Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations.Results. The properties of individual targets and of the sample as a whole are presented.
  •  
3.
  • Lagrange, A. M., et al. (författare)
  • Unveiling the beta Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young beta Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at similar or equal to 9 au, as well as an inner planet orbiting at similar or equal to 2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution.Aims. We aim to further constrain the orbital and physical properties of beta Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system.Methods. We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry.Results. The orbital properties of both planets are constrained with a semi-major axis of 9.8 0.4 au and 2.7 +/- 0.02 au for b and c, respectively, and eccentricities of 0.09 +/- 0.1 and 0.27 +/- 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of beta Pictoris c might still be over-estimated. If no prior is provided on the mass of beta Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of beta Pictoris b, we find a solution in the 10-11 M-Jup range. Conversely, beta Pictoris c's mass is well constrained, at 7.8 +/- 0.4 M-Jup, assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the beta Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2 sigma level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M-Jup closer than 3 au, and more massive than 3.5 M-Jup between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M-Jup.Conclusions. Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of beta Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of beta Pictoris b.
  •  
4.
  • Bonnefoy, M., et al. (författare)
  • The GJ 504 system revisited Combining interferometric, radial velocity, and high contrast imaging data
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The G-type star GJ504A is known to host a 3-35 M-Jup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 mu m) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1.35 +/- 0.04 R-circle dot for GJ504A. The radius yields isochronal ages of 21 +/- 2 Myr or 4.0 +/- 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4(-4.3)(+3.8) degrees or 18.6(-3.8)(+4.3) degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 mu m SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (<= 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T-eff = 550 +/- 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L-circle dot = 6.15 +/- 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T-eff yield masses of M = 1.3(-0.3)(+0.6) M-Jup and M = 23(-9)(+10) M-Jup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M-Jup with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.
  •  
5.
  • Lagrange, A. -M., et al. (författare)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.Aims. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
  •  
6.
  • Lazzoni, C., et al. (författare)
  • Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aims. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (M-p, a(p)), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits.
  •  
7.
  • Rodet, L., et al. (författare)
  • Dynamical masses of M-dwarf binaries in young moving groups I. The case of TWA22 and GJ2060
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (<200 Myr) and in the low-mass regime (< 1 M-circle dot). GJ 2060AB and TWA22AB are two rare astrometric M-dwarf binaries, respectively members of the AB Doradus (AB Dor) and Beta Pictoris (beta Pic) moving groups. As their dynamical mass can be measured to within a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups.Aims. We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA22. We also characterize the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models.Methods. We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain MonteCarlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060AB and TWA22AB from the astrometry and RVs. Complementary data obtained with the integral field spectrograph VLT /SINFONI were gathered to extract the individual near-infrared (1.1-2.5 mu m) medium-resolution (R similar to 1500 2000) spectra of GJ 2060A and B. We compared the spectra to those of known objects and to grids of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects.Results. We find a total mass of 0 : 18 +/- 0 : 02 M-circle dot for TWA22, which is in good agreement with model predictions at the age of the fi Pic moving group. We obtain a total mass of 1 : 09 +/- 0 : 10 M-circle dot for GJ 2060. We estimate a spectral type of M1 +/- 0.5, L/L-circle dot = -1.20 +/- 0.05 dex, and T-eff = 3700 +/- 100 K for GJ 2060 A. The B component is a M3 +/- 0 : 5 dwarf with L/L-circle dot = 1.63 +/- 0.05 dex and T-eff = 3400 +/- 100 K. The dynamical mass of GJ 2060AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50-150 Myr. It is 10%-20% (1-2 sigma, depending on the assumed age) above the model's predictions, corresponding to an underestimation of 0.10-0.20 M fi. Coevality suggests a young age for the system (similar to 50 Myr) according to most evolutionary models.Conclusions. TWA22 validates the predictions of recent evolutionary tracks at similar to 20 Myr. On the other hand, we evidence a 1-2 sigma mismatch between the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively, this would confirm the model's tendency to underestimate the mass of young low-mass stars.
  •  
8.
  • Chauvin, G., et al. (författare)
  • Investigating the young solar system analog HD 95086 A combined HARPS and SPHERE exploration
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 Mjup have been directly imaged.Aims. Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light.Methods. We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017.Results. We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4 mu m spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet's orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2(-0.2)(+0.3), with a semi-major axis similar to 52 au corresponding to orbital periods of similar to 288 yr and an inclination that peaks at i = 141 degrees, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations.
  •  
9.
  • Lazzoni, C., et al. (författare)
  • The search for disks or planetary objects around directly imaged companions : a candidate around DH Tauri B
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered using radial velocity and transit techniques, an increasing number have been directly imaged. These planets and brown dwarfs are extraordinary sources of information that help in rounding out our understanding of planetary systems.Aims. In this paper, we focus our attention on substellar companions detected with the latter technique, with the primary goal of investigating their close surroundings and looking for additional companions and satellites, as well as disks and rings. Any such discovery would shed light on many unresolved questions, particularly with regard to their possible formation mechanisms.Methods. To reveal bound features of directly imaged companions, whether for point-like or extended sources, we need to suppress the contribution from the source itself. Therefore, we developed a method based on the negative fake companion technique that first estimates the position in the field of view (FoV) and the flux of the imaged companion with high precision, then subtracts a rescaled model point spread function (PSF) from the imaged companion, using either an image of the central star or another PSF in the FoV. Next it performs techniques, such as angular differential imaging, to further remove quasi-static patterns of the star (i.e., speckle contaminants) that affect the residuals of close-in companions.Results. After testing our tools on simulated companions and disks and on systems that were chosen ad hoc, we applied the method to the sample of substellar objects observed with SPHERE during the SHINE GTO survey. Among the 27 planets and brown dwarfs we analyzed, most objects did not show remarkable features, which was as expected, with the possible exception of a point source close to DH Tau B. This candidate companion was detected in four different SPHERE observations, with an estimated mass of ~1MJup, and a mass ratio with respect to the brown dwarf of 1∕10. This binary system, if confirmed, would be the first of its kind, opening up interesting questions for the formation mechanism, evolution, and frequency of such pairs. In order to address the latter, the residuals and contrasts reached for 25 companions in the sample of substellar objects observed with SPHERE were derived. If the DH Tau Bb companion is real, the binary fraction obtained is ~7%, which is in good agreement with the results obtained for field brown dwarfs.Conclusions. While there may currently be many limitations affecting the exploration of bound features to directly imaged exoplanets and brown dwarfs, next-generation instruments from the ground and space (i.e., JWST, ELT, and LUVOIR) will be able to image fainter objects and, thus, drive the application of this technique in upcoming searches for exo-moons and circumplanetary disks. 
  •  
10.
  • Ligi, R., et al. (författare)
  • Investigation of the inner structures around HD 169142 with VLT/SPHERE
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 473:2, s. 1774-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of the Herbig Ae star HD 169142 with the VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS) (Y, J and H bands). We detect several bright blobs at similar to 180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the H and K-S bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at similar to 93 mas separation and position angle of 355 degrees, at a location very close to previous detections. It appears point-like in the YJ and K bands but is more extended in the H band. We also marginally detect an inner ring in the RDI data at similar to 100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy