SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Demichelis F) "

Sökning: WFRF:(Demichelis F)

  • Resultat 1-10 av 17
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Demichelis, F., et al. (författare)
  • TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort
  • 2007
  • Ingår i: Oncogene. - Basingstoke : Nature Publ. Group. - 0950-9232 .- 1476-5594. ; 26:31, s. 4596-4599
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of the TMPRSS2:ERG fusion in prostate cancer suggests that distinct molecular subtypes may define risk for disease progression. In surgical series, TMPRSS2:ERG fusion was identified in 50% of the tumors. Here, we report on a population-based cohort of men with localized prostate cancers followed by expectant (watchful waiting) therapy with 15% (17/111) TMPRSS2:ERG fusion. We identified a statistically significant association between TMPRSS2:ERG fusion and prostate cancer specific death (cumulative incidence ratio=2.7, P<0.01, 95% confidence interval=1.3–5.8). Quantitative reverse-transcription–polymerase chain reaction demonstrated high estrogen-regulated gene (ERG) expression to be associated with TMPRSS2:ERG fusion (P<0.005). These data suggest that TMPRSS2:ERG fusion prostate cancers may have a more aggressive phenotype, possibly mediated through increased ERG expression.
  •  
2.
  • Conteduca, V., et al. (författare)
  • Plasma tumour DNA as an early indicator of treatment response in metastatic castration-resistant prostate cancer
  • 2020
  • Ingår i: British Journal of Cancer. - 0007-0920. ; 123, s. 982-987
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Plasma tumour DNA (ptDNA) levels on treatment are associated with response in a variety of cancers. However, the role of ptDNA in prostate cancer monitoring remains largely unexplored. Here we characterised on-treatment ptDNA dynamics and evaluated its potential for early assessment of therapy efficacy for metastatic castration-resistant prostate cancer (mCRPC). Methods Between 2011 and 2016, 114 sequential plasma samples from 43 mCRPC abiraterone-treated patients were collected. Targeted next-generation sequencing was performed to determine ptDNA fraction. ptDNA progressive disease was defined as a rise in the fraction compared to the pre-treatment. Results A ptDNA rise in the first on-treatment sample (interquartile range (IQR) 2.6-3.7 months) was significantly associated with increased risk of early radiographic or any prostate-specific antigen (PSA) rise (odds ratio (OR) = 15.8, 95% confidence interval (CI) 3.5-60.2,p = 0.0002 and OR = 6.0, 95% CI 1.6-20.0,p = 0.01, respectively). We also identified exemplar cases that had a rise in PSA or pseudoprogression secondary to bone flare but no rise in ptDNA. In an exploratory analysis, initial ptDNA change was found to associate with the duration of response to prior androgen deprivation therapy (p < 0.0001) but not to prior taxanes (p = 0.32). Conclusions We found that ptDNA assessment for therapy monitoring in mCRPC is feasible and provides data relevant to the clinical setting. Prospective evaluation of these findings is now merited.
  •  
3.
  • Mucci, Lorelei A., et al. (författare)
  • Nine-gene molecular signature is not associated with prostate cancer death in a watchful waiting cohort
  • 2008
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - Baltimore : Waverly Press. - 1055-9965 .- 1538-7755. ; 17:1, s. 249-251
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor molecular markers hold promise to distinguish potentially lethal from indolent prostate cancer and to guide treatment choices. A previous study identified a nine-gene molecular signature in tumors associated with prostate-specific antigen relapse after prostatectomy. We examined this molecular model in relation to prostate cancer death among 172 men with initially localized disease. We quantified protein expression of the nine genes in tumors to classify progression risk. Accounting for clinical prognostic factors, the nine-gene model did not provide discrimination to predict lethal and indolent prostate cancer.
  •  
4.
  • Mucci, Lorelei A., et al. (författare)
  • Testing a multigene signature of prostate cancer death in the Swedish Watchful Waiting Cohort
  • 2008
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - Philadelphia : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 17:7, s. 1682-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • Although prostate cancer is a leading cause of cancer death, most men die with and not from their disease, underscoring the urgency to distinguish potentially lethal from indolent prostate cancer. We tested the prognostic value of a previously identified multigene signature of prostate cancer progression to predict cancer-specific death. The Örebro Watchful Waiting Cohort included 172 men with localized prostate cancer of whom 40 died of prostate cancer. We quantified protein expression of the markers in tumor tissue by immunohistochemistry and stratified the cohort by quintiles according to risk classification. We accounted for clinical variables (age, Gleason, nuclear grade, and tumor volume) using Cox regression and calculated receiver operator curves to compare discriminatory ability. The hazard ratio of prostate cancer death increased with increasing risk classification by the multigene model, with a 16-fold greater risk comparing highest-risk versus lowest-risk strata, and predicted outcome independent of clinical factors (P = 0.002). The best discrimination came from combining information from the multigene markers and clinical data, which perfectly classified the lowest-risk stratum where no one developed lethal disease; using the two lowest-risk groups as reference, the hazard ratio (95% confidence interval) was 11.3 (4.0-32.8) for the highest-risk group and difference in mortality at 15 years was 60% (50-70%). The combined model provided greater discriminatory ability (area under the curve = 0.78) than the clinical model alone (area under the curve = 0.71; P = 0.04). Molecular tumor markers can add to clinical variables to help distinguish lethal and indolent prostate cancer and hold promise to guide treatment decisions. 
  •  
5.
  • Sboner, Andrea, et al. (författare)
  • Molecular sampling of prostate cancer : a dilemma for predicting disease progression
  • 2010
  • Ingår i: BMC Medical Genomics. - London, United Kingdom : BioMed Central. - 1755-8794 .- 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models.Methods: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases.Results: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors.Conclusions: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.
  •  
6.
  • Setlur, Sunita R., et al. (författare)
  • Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer
  • 2008
  • Ingår i: Journal of the National Cancer Institute. - Oxford : Oxford univ. press. - 0027-8874 .- 1460-2105. ; 100:11, s. 815-825
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The majority of prostate cancers harbor gene fusions of the 5'-untranslated region of the androgen-regulated transmembrane protease serine 2 (TMPRSS2) promoter with erythroblast transformation-specific transcription factor family members. The common fusion between TMPRESS2 and v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG) is associated with a more aggressive clinical phenotype, implying the existence of a distinct subclass of prostate cancer defined by this fusion. METHODS: We used complementary DNA-mediated annealing, selection, ligation, and extension to determine the expression profiles of 6144 transcriptionally informative genes in archived biopsy samples from 455 prostate cancer patients in the Swedish Watchful Waiting cohort (1987-1999) and the United States-based Physicians(') Health Study cohort (1983-2003). A gene expression signature for prostate cancers with the TMPRSS2-ERG fusion was determined using partitioning and classification models and used in computational functional analysis. Cell proliferation and TMPRSS2-ERG expression in androgen receptor-negative (NCI-H660) prostate cancer cells after treatment with vehicle or estrogenic compounds were assessed by viability assays and quantitative polymerase chain reaction, respectively. All statistical tests were two-sided. RESULTS: We identified an 87-gene expression signature that distinguishes TMPRSS2-ERG fusion prostate cancer as a discrete molecular entity (area under the curve = 0.80, 95% confidence interval [CI] = 0.792 to 0.81; P < .001). Computational analysis suggested that this fusion signature was associated with estrogen receptor (ER) signaling. Viability of NCI-H660 cells decreased after treatment with estrogen (viability normalized to day 0, estrogen vs vehicle at day 8, mean = 2.04 vs 3.40, difference = 1.36, 95% CI = 1.12 to 1.62) or ERbeta agonist (ERbeta agonist vs vehicle at day 8, mean = 1.86 vs 3.40, difference = 1.54, 95% CI = 1.39 to 1.69) but increased after ERalpha agonist treatment (ERalpha agonist vs vehicle at day 8, mean = 4.36 vs 3.40, difference = 0.96, 95% CI = 0.68 to 1.23). Similarly, expression of TMPRSS2-ERG decreased after ERbeta agonist treatment (fold change over internal control, ERbeta agonist vs vehicle at 24 hours, NCI-H660, mean = 0.57- vs 1.0-fold, difference = 0.43-fold, 95% CI = 0.29- to 0.57-fold) and increased after ERalpha agonist treatment (ERalpha agonist vs vehicle at 24 hours, mean = 5.63- vs 1.0-fold, difference = 4.63-fold, 95% CI = 4.34- to 4.92-fold). CONCLUSIONS: TMPRSS2-ERG fusion prostate cancer is a distinct molecular subclass. TMPRSS2-ERG expression is regulated by a novel ER-dependent mechanism.
  •  
7.
  • Tomlins, Scott A., et al. (författare)
  • The role of SPINK1 in ETS rearrangement-negative prostate cancers
  • 2008
  • Ingår i: Cancer Cell. - Amsterdam : Elsevier. - 1535-6108 .- 1878-3686. ; 13:6, s. 519-28
  • Tidskriftsartikel (refereegranskat)abstract
    • ETS gene fusions have been characterized in a majority of prostate cancers; however, the key molecular alterations in ETS-negative cancers are unclear. Here we used an outlier meta-analysis (meta-COPA) to identify SPINK1 outlier expression exclusively in a subset of ETS rearrangement-negative cancers ( approximately 10% of total cases). We validated the mutual exclusivity of SPINK1 expression and ETS fusion status, demonstrated that SPINK1 outlier expression can be detected noninvasively in urine, and observed that SPINK1 outlier expression is an independent predictor of biochemical recurrence after resection. We identified the aggressive 22RV1 cell line as a SPINK1 outlier expression model and demonstrate that SPINK1 knockdown in 22RV1 attenuates invasion, suggesting a functional role in ETS rearrangement-negative prostate cancers.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy