SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dennis J) ;lar1:(kau)"

Sökning: WFRF:(Dennis J) > Karlstads universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Rabih, A. A. S., et al. (författare)
  • MEMS-Based Acetone Vapor Sensor for Non-Invasive Screening of Diabetes
  • 2018
  • Ingår i: IEEE Sensors Journal. - 1530-437X .- 1558-1748. ; 18:23, s. 9486-9500
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetone vapor sensing is important for environmental monitoring and non-invasive screening of diabetes mellitus (DM). Inhaling higher than 176 parts per million (ppm) acetone concentrations affects the respiratory system, while acetone in exhaled breath correlates with blood glucose and exhaling more than 1.8 ppm indicates the person is in danger of DM. DM is currently diagnosed invasively by measuring glucose level in blood, which is painful, and therefore inconvenient. This paper reports MEMS sensor device functionalized with blend of Chitosan/Polyethylene glycol polymers for acetone vapor sensing for possible non-invasive screening of diabetes. The sensor was experimentally tested using synthetic acetone vapor, and found to give linear response for 0.05-5 ppm acetone in air, with a sensitivity of 21 mV/ppm, good repeatability, response, and reversibility. Cross-sensitivity for 2-propanol and methanol was examined, where the responses of the sensor to 1 ppm concentration in air of these two analytes were found to be 24% and 33%, respectively, less compared to its response to the same concentration of acetone.
  •  
3.
  • Rabih, A. A. S., et al. (författare)
  • MetalMUMPs resonator for acetone vapor sensing
  • 2017
  • Ingår i: Proceedings of the 2017 IEEE regional symposium on micro and nanoelectronics (RSM). - : IEEE. - 9781509040292 ; , s. 5-9
  • Konferensbidrag (refereegranskat)abstract
    • Acetone vapor monitoring is essential in workplace for human health and safety, where exposure to acetone concentration more than 176 parts per million (ppm) can cause damage to eyes, liver, kidneys and central nervous system. In addition, acetone in exhaled breath is known to be good biomarker for non-invasive screening of diabetes. The most common used acetone vapor sensors are based on metal oxide semiconductor sensors, which work at higher temperatures, and hence consume more power. This paper reports MetalMUMPs device for acetone vapor sensing for environmental monitoring. The device is based on electrothermal actuation and capacitive sensing using differential capacitance measurement technique. MS3110 universal capacitive readout circuit was used to readout the small change of the static capacitance when the device is actuated using 0.71 Vrms with a driving frequency range of 0.5 kHz-8 kHz. The output signal of the circuit is given as a voltage and it can be directly related to the capacitance change. The output voltage change was found to increase linearly with increasing the acetone vapor concentration from 100 ppm to 500 ppm with a concentration sensitivity of 0.65 mV/ppm.
  •  
4.
  • Åsberg, Dennis, 1988-, et al. (författare)
  • The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography
  • 2017
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1496, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • The adsorption mechanism for three peptides was studied under overloaded conditions through adsorption isotherm measurements in the presence of an ion-pairing reagent, trifluoroacetic acid (TFA), on an end-capped C18-bonded stationary phase. The overall aim of the study was to obtain a better understanding of how the acetonitrile and the TFA fractions in the eluent affected the overloaded elution profiles and the selectivity between peptides using mechanistic modelling and multivariate design of experiments. When studying the effect of TFA, direct evidence for ion pair formation between a peptide and TFA in acetonitrile-water solutions was provided by fluorine-proton nuclear Overhauser NMR enhancement experiments and the adsorption of TFA on the stationary phase was measured by frontal analysis. The adsorption isotherms for each peptide were then determined by the inverse method at eight TFA concentrations ranging from 2.6 mM to 37.3 mM (0.02–0.29 vol-%) in isocratic elution. The equilibrium between the peptide ion and the peptide-TFA complex was modelled by coupling the mass-balance to reaction kinetics and determining separate adsorption isotherms for the two species. We found that a Langmuir isotherm described the elution profile of peptide-TFA complex well while the peptide ion was described by a bi-Langmuir adsorption isotherm since it exhibited strong secondary interactions. The elution profiles had an unfavorable shape at low TFA concentrations consisting of a spike in their front and a long tailing rear due to the secondary interactions for the peptide ion having very low saturation capacity. The acetonitrile dependence on the adsorption isotherms was studied by determination of adsorption isotherms directly from elution profiles obtained in gradient elution which enabled a broad acetonitrile interval to be studied. Here, it was found that the column saturation capacity was quickly reached at very low acetonitrile fractions and that there were significant variations in adsorption with the molecular weight. Finally, practical implications for method development are discussed based on an experimental design where gradient slope and TFA concentrations are used as factors. (c) 2017 Published by Elsevier B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy