SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deshmukh Harshal) ;lar1:(lu)"

Sökning: WFRF:(Deshmukh Harshal) > Lunds universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deshmukh, Harshal A., et al. (författare)
  • Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:1, s. 80-90
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. OBJECTIVE: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. DESIGN: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. RESULTS: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10-9) and rs9368219 in the CDKAL1 (P value = 3.15 × 10-9) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. CONCLUSION: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.
  •  
2.
  • Postmus, Iris, et al. (författare)
  • Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.
  • 2014
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.
  •  
3.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
4.
  • Sandholm, Niina, et al. (författare)
  • The genetic landscape of renal complications in type 1 diabetes
  • 2017
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673. ; 28:2, s. 557-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4310-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associatedvariants.Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2310-5) and the risk of type 2 diabetes (P=6.1310-4) associated with the risk of diabetic kidney disease.Wealso found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1310-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0310-6), and pentose and glucuronate interconversions (P=3.0310-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
  •  
5.
  • Zhou, Kaixin, et al. (författare)
  • Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis.
  • 2014
  • Ingår i: The Lancet Diabetes & Endocrinology. - 2213-8595. ; 2:6, s. 481-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy