SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Detwiler J. A.) "

Sökning: WFRF:(Detwiler J. A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
2.
  • Phillips, Vaughan T.J., et al. (författare)
  • Ice multiplication by breakup in ice-ice collisions. Part II : Numerical simulations
  • 2017
  • Ingår i: Journals of the Atmospheric Sciences. - 0022-4928. ; 74:9, s. 2789-2811
  • Tidskriftsartikel (refereegranskat)abstract
    • In Part I of this two-part paper, a formulation was developed to treat fragmentation in ice-ice collisions. In the present Part II, the formulation is implemented in two microphysically advanced cloud models simulating a convective line observed over the U.S. high plains. One model is 2D with a spectral bin microphysics scheme. The other has a hybrid bin-two-moment bulk microphysics scheme in 3D. The case consists of cumulonimbus cells with cold cloud bases (near 0° C) in a dry troposphere. Only with breakup included in the simulation are aircraft observations of particles with maximum dimensions >0.2mmin the storm adequately predicted by both models. In fact, breakup in ice-ice collisions is by far the most prolific process of ice initiation in the simulated clouds (95%-98% of all nonhomogeneous ice), apart from homogeneous freezing of droplets. Inclusion of breakup in the cloud-resolving model (CRM) simulations increased, by between about one and two orders of magnitude, the average concentration of ice between about 0° and -30°C. Most of the breakup is due to collisions of snow with graupel/hail. It is broadly consistent with the theoretical result in Part I about an explosive tendency for ice multiplication. Breakup in collisions of snow (crystals > ~1mm and aggregates) with denser graupel/hail was the main pathway for collisional breakup and initiated about 60%-90% of all ice particles not from homogeneous freezing, in the simulations by both models. Breakup is predicted to reduce accumulated surface precipitation in the simulated storm by about 20%-40%.
  •  
3.
  • Phillips, Vaughan T.J., et al. (författare)
  • Multiple environmental influences on the lightning of cold-based continental cumulonimbus clouds. Part I : Description and validation of model
  • 2020
  • Ingår i: Journals of the Atmospheric Sciences. - 0022-4928. ; 77:12, s. 3999-4024
  • Tidskriftsartikel (refereegranskat)abstract
    • In this two-part paper, influences from environmental factors on lightning in a convective storm are assessed with a model. In Part I, an electrical component is described and applied in the Aerosol-Cloud model (AC). AC treats many types of secondary (e.g., breakup in ice-ice collisions, raindrop-freezing fragmentation, rime splintering) and primary (heterogeneous, homogeneous freezing) ice initiation. AC represents lightning flashes with a statistical treatment of branching from a fractal law constrained by video imagery. The storm simulated is from the Severe Thunderstorm Electrification and Precipitation Study (STEPS; 19/20 June 2000). The simulation was validated microphysically [e.g., ice/droplet concentrations and mean sizes, liquid water content (LWC), reflectivity, surface precipitation] and dynamically (e.g., ascent) in our 2017 paper. Predicted ice concentrations (;10 L21) agreed-to within a factor of about 2-with aircraft data at flight levels (2108 to 2158C). Here, electrical statistics of the same simulation are compared with observations. Flash rates (to within a factor of 2), triggering altitudes and polarity of flashes, and electric fields, all agree with the coincident STEPS observations. The ''normal'' tripole of charge structure observed during an electrical balloon sounding is reproduced by AC. It is related to reversal of polarity of noninductive charging in ice-ice collisions seen in laboratory experiments when temperature or LWC are varied. Positively charged graupel and negatively charged snow at most midlevels, charged away from the fastest updrafts, is predicted to cause the normal tripole. Total charge separated in the simulated storm is dominated by collisions involving secondary ice from fragmentation in graupel-snow collisions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy