SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Devkota Kiran) "

Sökning: WFRF:(Devkota Kiran)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Busayavalasa, Kiran, et al. (författare)
  • Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins
  • 2020
  • Ingår i: Plos Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:8
  • Tidskriftsartikel (refereegranskat)abstract
    • TheC.elegansproteins PAQR-2 (a homolog of the human seven-transmembrane domain AdipoR1 and AdipoR2 proteins) and IGLR-2 (a homolog of the mammalian LRIG proteins characterized by a single transmembrane domain and the presence of immunoglobulin domains and leucine-rich repeats in their extracellular portion) form a complex that protects against plasma membrane rigidification by promoting the expression of fatty acid desaturases and the incorporation of polyunsaturated fatty acids into phospholipids, hence increasing membrane fluidity. In the present study, we leveraged a novel gain-of-function allele of PAQR-1, a PAQR-2 paralog, to carry out structure-function studies. We found that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2, that PAQR-1 does not require IGLR-2 but acts via the same pathway as PAQR-2, and that the divergent N-terminal cytoplasmic domains of the PAQR-1 and PAQR-2 proteins serve a regulatory function and may regulate access to the catalytic site of these proteins. We also show that overexpression of human AdipoR1 or AdipoR2 alone is sufficient to confer increased palmitic acid resistance in HEK293 cells, and thus act in a manner analogous to the PAQR-1 gain-of-function allele. Author summary Cells are enclosed within membranes primarily composed of fat. When membranes contain much saturated fats, they tend to become more rigid, as with butter. Conversely, when membranes are rich in unsaturated fats, they become more fluid, as with vegetable oils. Our goal is to better understand how cells monitor and adjust the composition and properties of their membranes. We focus on a small group of proteins found in all animals, and called AdipoR1 and AdipoR2 in humans, and PAQR-1 and PAQR-2 in the wormCaenorhabditis elegans. We now found a version of PAQR-1 that is more "active", and promotes increased levels of unsaturated fats in membranes. By swapping different parts of the PAQR-1 protein with those of PAQR-2, we were able to determine which protein parts played which roles. We found that it is the transmembrane domains of PAQR-2 that dictate its requirements for another protein called IGLR-2 and that the intracellular domains of PAQR-1 and PAQR-2 play a regulatory role. These studies help understand how AdipoR1 and AdipoR2 regulate membrane composition in human cells, which is a vital function for us to thrive on diets that vary greatly in the types of fats that they contain.
  •  
3.
  • Ruiz, Mario, 1984, et al. (författare)
  • AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity
  • 2023
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 299:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
  •  
4.
  • Ruiz, Mario, 1984, et al. (författare)
  • Membrane fluidity is regulated by the C-elegans transmembrane protein FLD-1 and its human homologs TLCD1/2
  • 2018
  • Ingår i: eLife. - 2050-084X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy