SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Di Santo Valentina) "

Sökning: WFRF:(Di Santo Valentina)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Menditto, Enrica, et al. (författare)
  • Adherence to treatment in allergic rhinitis using mobile technology : The MASK Study
  • 2019
  • Ingår i: Clinical and Experimental Allergy. - : WILEY. - 0954-7894 .- 1365-2222. ; 49:4, s. 442-460
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mobile technology may help to better understand the adherence to treatment. MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centred ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App. Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from 1 January 2016 to 1 August 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach. Results: A total of 12143 users were registered. A total of 6949 users reported at least one VAS data recording. Among them, 1887 users reported >= 7 VAS data. About 1195 subjects were included in the analysis of adherence. One hundred and thirty-six (11.28%) users were adherent (MPR >= 70% and PDC <= 1.25), 51 (4.23%) were partly adherent (MPR >= 70% and PDC = 1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR <70%). Of those, the largest group was non-adherent to medications and the time interval was increased in 442 (36.68%) users. Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous vs on-demand treatment for allergic rhinitis symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This also represents a novel approach for analysing medication-taking behaviour in a real-world setting.
  •  
2.
  • Akanyeti, Otar, et al. (författare)
  • Fish-inspired segment models for undulatory steady swimming
  • 2022
  • Ingår i: Bioinspiration & Biomimetics. - : IOP Publishing. - 1748-3182 .- 1748-3190. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Many aquatic animals swim by undulatory body movements and understanding the diversity of these movements could unlock the potential for designing better underwater robots. Here, we analyzed the steady swimming kinematics of a diverse group of fish species to investigate whether their undulatory movements can be represented using a series of interconnected multi-segment models, and if so, to identify the key factors driving the segment configuration of the models. Our results show that the steady swimming kinematics of fishes can be described successfully using parsimonious models, 83% of which had fewer than five segments. In these models, the anterior segments were significantly longer than the posterior segments, and there was a direct link between segment configuration and swimming kinematics, body shape, and Reynolds number. The models representing eel-like fishes with elongated bodies and fishes swimming at high Reynolds numbers had more segments and less segment length variability along the body than the models representing other fishes. These fishes recruited their anterior bodies to a greater extent, initiating the undulatory wave more anteriorly. Two shape parameters, related to axial and overall body thickness, predicted segment configuration with moderate to high success rate. We found that head morphology was a good predictor of its segment length. While there was a large variation in head segments, the length of tail segments was similar across all models. Given that fishes exhibited variable caudal fin shapes, the consistency of tail segments could be a result of an evolutionary constraint tuned for high propulsive efficiency. The bio-inspired multi-segment models presented in this study highlight the key bending points along the body and can be used to decide on the placement of actuators in fish-inspired robots, to model hydrodynamic forces in theoretical and computational studies, or for predicting muscle activation patterns during swimming.
  •  
3.
  • Di Santo, Valentina, et al. (författare)
  • Convergence of undulatory swimming kinematics across a diversity of fishes
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:49
  • Tidskriftsartikel (refereegranskat)abstract
    • Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.
  •  
4.
  • Di Santo, Valentina, et al. (författare)
  • Coral loss alters guarding and farming behavior of a Caribbean damselfish
  • 2020
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 167:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Coral loss is a major element of global ecological change in the oceans that may shape the behavior of keystone species such as habitat-attached animals. Farming damselfishes cultivate and aggressively protect algal garden within their territory, thereby shaping local fish assemblages and macro-algae diversity. Following the widespread loss of live branching coral throughout Florida and the Caribbean Sea, dusky damselfish (Stegastes adustus) have modified their territorial behavior. We compared antagonistic behavior, and size and algal species composition of territories of dusky damselfish on dead branching coral rubble and live boulder coral in the Dry Tortugas National Park, USA. Even though similar numbers of intruders entered each habitat type, dusky damselfish on rubble territories chased out significantly more fishes, had larger territories and more species of algae were present in their gardens. This study shows that dusky damselfish successfully occupy living and dead coral areas; however, there are potential trade-offs between defending a larger territory and cultivating fewer algal species.
  •  
5.
  • Di Santo, Valentina (författare)
  • EcoPhysioMechanics : Integrating Energetics and Biomechanics to Understand Fish Locomotion under Climate Change
  • 2022
  • Ingår i: Integrative and Comparative Biology. - : Oxford University Press (OUP). - 1540-7063 .- 1557-7023. ; 62:3, s. 711-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological physiologists and biomechanists have investigated swimming performance in a diversity of fishes; however, the connection between form, function, and energetics of locomotion has been rarely evaluated in the same system and under climate change scenarios. In this perspective, I argue that working within the framework of “EcoPhysioMechanics,” i.e. integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors, improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how EcoPhysioMechanics can be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is necessary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and gaps in empirical datasets that are necessary to understand fish swimming under changing environments. 
  •  
6.
  • Guo (郭佳诚), Jiacheng, et al. (författare)
  • Vortex dynamics and fin-fin interactions resulting in performance enhancement in fish-like propulsion
  • 2023
  • Ingår i: Physical Review Fluids. - 2469-990X. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The leading-edge vortex (LEV) formation on the caudal fin (CF) has been identified as playing a key role in efficient lift-based thrust production of fish-like propulsion. The enhancement of the CF LEV through its interaction with vortices formed upstream due to a median fin with a distinct shape is the focus of this paper. High-speed, high-fidelity videos and particle imaging velocimetry (PIV) were obtained from rainbow trout during steady forward swimming to visualize the undulatory kinematics and two-dimensional flow behavior. Body kinematics are quantified using a traveling-wave formulation that is used to prescribe the motion of a high-fidelity three-dimensional surface model of the fish body for a computational fluid dynamics (CFD) study. The pressure field of the CFD result is compared and validated with the PIV result from the experiment. Using CFD, the vortex forming and shedding behaviors of the anal fin (AF) and their capturing and interaction with the trunk (TK) and the CF are visualized and examined. Coherent AF-bound LEVs are found to form periodically, leading to thrust production of the AF. The vortices subsequently shed from the AF are found to help stabilize and reinforce the LEV formation on the CF by aiding LEV initiation at stroke reversal and enhancing LEV during a tail stroke, which leads to enhancement of lift-based thrust production. The CF is found to shed vortex tubes (VTs) that create backward-facing jets, and the ventral-side VT and the associated backward jets are both strengthened by vortices shed by the AF. An additional benefit of the AF is found to be reduction of body drag by reducing the lateral crossflow that leads to loss of beneficial pressure gradient across the body. Through varying AF-CF spacing and AF height, we find that CF thrust enhancement and TK drag reduction due to the AF are both affected by the position and size of the AF. The position and area of the AF that led to the most hydrodynamic benefit are found to be the original, anatomically accurate position and size. In this paper, we demonstrate the important effect of vortex interaction among propulsive surfaces in fish-like propulsion.
  •  
7.
  • Lauer, Jessy, et al. (författare)
  • Multi-animal pose estimation, identification and tracking with DeepLabCut
  • 2022
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 19:4, s. 496-504
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source pose estimation toolbox, and provide high-performance animal assembly and tracking—features required for multi-animal scenarios. Furthermore, we integrate the ability to predict an animal’s identity to assist tracking (in case of occlusions). We illustrate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future algorithm development.
  •  
8.
  • O'Connell, Kyle A., et al. (författare)
  • A Tale of Two Skates : Comparative Phylogeography of North American Skate Species with Implications for Conservation
  • 2019
  • Ingår i: Copeia. - 0045-8511 .- 1938-5110. ; 107:2, s. 297-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic data can provide novel insights into the natural history of oceanic species. These data can inform the management of vulnerable and slow-maturing species by estimating population structure, rates of migration, and the distribution of genetic diversity. In this study we focus on two protected elasmobranch species, the Winter Skate, Leucoraja ocellata, and the Little Skate, L. erinacea. We use genome-wide SNPs to estimate population structure, and quantify migration and genetic diversity among both species from four sampling localities across the Atlantic coast of North America. We find that species of Leucoraja are generally isolated by distance, although we infer some fine-scale population structure. Specifically, estimates of effective migration infer fine-scale population structure in L. ocellata between the northern sites of Georges Bank and the Mid-Atlantic sampling sites, whereas L. erinacea shows no evidence of population genetic structure in any analyses. We also found that genetic diversity is concentrated in the central sites of Georges Bank and the Mid-Atlantic Bight for L. ocellata, but is reduced at these two sites in L. erinacea, suggesting opposite distributions of genetic diversity between species. Thus, genomic data suggest that while species of Leucoraja lack discrete population structure, they likely employ only mid-range dispersal. These findings correspond to ecological studies that have found eco physiological differences between embryonic and juvenile Leucoraja from different localities. Taken together, small-bodied skate research emphasizes the importance of local adaptive plasticity for marine species, even without population genetic structure. Conservation strategies should focus on managing the portions of the Atlantic coast considered most vital to reproduction of Leucoraja, but should not recognize multiple populations across their range.
  •  
9.
  • Papastamatiou, Yannis P., et al. (författare)
  • Sharks surf the slope : Current updrafts reduce energy expenditure for aggregating marine predators
  • 2021
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 90:10, s. 2302-2314
  • Tidskriftsartikel (refereegranskat)abstract
    • An animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles. In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers. Despite marine predators often residing within high-current area, no study has investigated the potential role of the energetic landscape in driving such habitat selectivity. Over 500 grey reef sharks Carcharhinus amblyrhynchos reside in the southern channel of Fakarava Atoll, French Polynesia. We used diver observations, acoustic telemetry and biologging to show that sharks use regions of predicted updrafts and switch their core area of space use based on tidal state (incoming versus outgoing). During incoming tides, sharks form tight groups and display shuttling behaviour (moving to the front of the group and letting the current move them to the back) to maintain themselves in these potential updraft zones. During outgoing tides, group dispersion increases, swimming depths decrease and shuttling behaviours cease. These changes are likely due to shifts in the nature and location of the updraft zones, as well as turbulence during outgoing tides. Using a biomechanical model, we estimate that routine metabolic rates for sharks may be reduced by 10%-15% when in updraft zones. Grey reef sharks save energy using predicted updraft zones in channels and 'surfing the slope'. Analogous to birds using wind-driven updraft zones, negatively buoyant marine animals may use current-induced updraft zones to reduce energy expenditure. Updrafts should be incorporated into dynamic energy landscapes and may partially explain the distribution, behaviour and potentially abundance of marine predators.
  •  
10.
  • Vilmar, Matilda, et al. (författare)
  • Swimming performance of sharks and rays under climate change
  • 2022
  • Ingår i: Reviews in Fish Biology and Fisheries. - : Springer Science and Business Media LLC. - 0960-3166 .- 1573-5184. ; 32:3, s. 765-781
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change stressors (e.g., warming and ocean acidification) are an imminent challenge to the physiological performance of marine organisms. Several studies spanning the last decade have reported widespread effects of warming and acidification on marine fishes, especially teleosts, but more work is needed to elucidate the responses in marine elasmobranchs, i.e., sharks and rays. Dispersal capacity, as a result of locomotor performance, is a crucial trait that will determine which group of elasmobranchs will be more or less vulnerable to changes in the environment. In fact, efficient and high locomotor performance may determine the capacity for elasmobranchs to relocate to a more favorable area. In this review we integrate findings from work on locomotion of marine sharks and rays to identify characteristics that outline potential vulnerabilities and strength of sharks and rays under climate change. Traits such as intraspecific variability in response to climatic stressors, wide geographic range, thermotaxis, fast swimming or low energetic costs of locomotion are likely to enhance the capacity to disperse. Future studies may focus on understanding the interacting effect of climatic stressors on morphology, biomechanics and energetics of steady and unsteady swimming, across ontogeny and species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy