SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dichgans Martin) ;pers:(Woo Daniel)"

Sökning: WFRF:(Dichgans Martin) > Woo Daniel

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rannikmäe, Kristiina, et al. (författare)
  • COL4A2 is associated with lacunar ischemic stroke and deep ICH: Meta-analyses among 21,500 cases and 40,600 controls.
  • 2017
  • Ingår i: Neurology. - 1526-632X .- 0028-3878. ; 89:17, s. 1829-1839
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine whether common variants in familial cerebral small vessel disease (SVD) genes confer risk of sporadic cerebral SVD.We meta-analyzed genotype data from individuals of European ancestry to determine associations of common single nucleotide polymorphisms (SNPs) in 6 familial cerebral SVD genes (COL4A1, COL4A2, NOTCH3, HTRA1, TREX1, and CECR1) with intracerebral hemorrhage (ICH) (deep, lobar, all; 1,878 cases, 2,830 controls) and ischemic stroke (IS) (lacunar, cardioembolic, large vessel disease, all; 19,569 cases, 37,853 controls). We applied data quality filters and set statistical significance thresholds accounting for linkage disequilibrium and multiple testing.A locus in COL4A2 was associated (significance threshold p < 3.5 × 10-4) with both lacunar IS (lead SNP rs9515201: odds ratio [OR] 1.17, 95% confidence interval [CI] 1.11-1.24, p = 6.62 × 10-8) and deep ICH (lead SNP rs4771674: OR 1.28, 95% CI 1.13-1.44, p = 5.76 × 10-5). A SNP in HTRA1 was associated (significance threshold p < 5.5 × 10-4) with lacunar IS (rs79043147: OR 1.23, 95% CI 1.10-1.37, p = 1.90 × 10-4) and less robustly with deep ICH. There was no clear evidence for association of common variants in either COL4A2 or HTRA1 with non-SVD strokes or in any of the other genes with any stroke phenotype.These results provide evidence of shared genetic determinants and suggest common pathophysiologic mechanisms of distinct ischemic and hemorrhagic cerebral SVD stroke phenotypes, offering new insights into the causal mechanisms of cerebral SVD.
  •  
2.
  • Bellenguez, Celine, et al. (författare)
  • Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:3, s. 141-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 x 10(-11); odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
  •  
3.
  • Rannikmaee, Kristiina, et al. (författare)
  • Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease
  • 2015
  • Ingår i: Neurology. - 1526-632X. ; 84:9, s. 918-926
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives:We hypothesized that common variants in the collagen genes COL4A1/COL4A2 are associated with sporadic forms of cerebral small vessel disease.Methods:We conducted meta-analyses of existing genotype data among individuals of European ancestry to determine associations of 1,070 common single nucleotide polymorphisms (SNPs) in the COL4A1/COL4A2 genomic region with the following: intracerebral hemorrhage and its subtypes (deep, lobar) (1,545 cases, 1,485 controls); ischemic stroke and its subtypes (cardioembolic, large vessel disease, lacunar) (12,389 cases, 62,004 controls); and white matter hyperintensities (2,733 individuals with ischemic stroke and 9,361 from population-based cohorts with brain MRI data). We calculated a statistical significance threshold that accounted for multiple testing and linkage disequilibrium between SNPs (p < 0.000084).Results:Three intronic SNPs in COL4A2 were significantly associated with deep intracerebral hemorrhage (lead SNP odds ratio [OR] 1.29, 95% confidence interval [CI] 1.14-1.46, p = 0.00003; r(2) > 0.9 between SNPs). Although SNPs associated with deep intracerebral hemorrhage did not reach our significance threshold for association with lacunar ischemic stroke (lead SNP OR 1.10, 95% CI 1.03-1.18, p = 0.0073), and with white matter hyperintensity volume in symptomatic ischemic stroke patients (lead SNP OR 1.07, 95% CI 1.01-1.13, p = 0.016), the direction of association was the same. There was no convincing evidence of association with white matter hyperintensities in population-based studies or with non-small vessel disease cerebrovascular phenotypes.Conclusions:Our results indicate an association between common variation in the COL4A2 gene and symptomatic small vessel disease, particularly deep intracerebral hemorrhage. These findings merit replication studies, including in ethnic groups of non-European ancestry.
  •  
4.
  • Woo, Daniel, et al. (författare)
  • Meta-Analysis of Genome-Wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:4, s. 511-521
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly.
  •  
5.
  • Chung, Jaeyoon, et al. (författare)
  • Genome-wide association study of cerebral small vessel disease reveals established and novel loci
  • 2019
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 142:10, s. 3176-3189
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
  •  
6.
  • Malik, Rainer, et al. (författare)
  • Low-frequency and common genetic variation in ischemic stroke : The METASTROKE collaboration
  • 2016
  • Ingår i: Neurology. - 1526-632X. ; 86:13, s. 26-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes.METHODS: We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p < 1E-5) in the discovery phase for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the p value distribution for different bins of allele frequencies for all IS and stroke subtypes.RESULTS: We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency <5%) for both LVD and small vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and 30%) for CE (all p < 1E-5).CONCLUSIONS: Our findings suggest that the missing heritability in IS subtypes can in part be attributed to low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes.
  •  
7.
  •  
8.
  • Phuah, Chia-Ling, et al. (författare)
  • Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke
  • 2017
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 140:10, s. 2663-2672
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary intracerebral haemorrhage and lacunar ischaemic stroke are acute manifestations of progressive cerebral microvascular disease. Current paradigms suggest atherosclerosis is a chronic, dynamic, inflammatory condition precipitated in response to endothelial injury from various environmental challenges. Myeloperoxidase plays a central role in initiation and progression of vascular inflammation, but prior studies linking myeloperoxidase with stroke risk have been inconclusive. We hypothesized that genetic determinants of myeloperoxidase levels influence the development of vascular instability, leading to increased primary intracerebral haemorrhage and lacunar stroke risk. We used a discovery cohort of 1409 primary intracerebral haemorrhage cases and 1624 controls from three studies, an extension cohort of 12 577 ischaemic stroke cases and 25 643 controls from NINDSSiGN, and a validation cohort of 10 307 ischaemic stroke cases and 29 326 controls from METASTROKE Consortium with genome-wide genotyping to test this hypothesis. A genetic risk score reflecting elevated myeloperoxidase levels was constructed from 15 common single nucleotide polymorphisms identified from prior genome-wide studies of circulating myeloperoxidase levels (P55 - 10 6). This genetic risk score was used as the independent variable in multivariable regression models for association with primary intracerebral haemorrhage and ischaemic stroke subtypes. We used fixed effects meta-analyses to pool estimates across studies. We also used Cox regression models in a prospective cohort of 174 primary intracerebral haemorrhage survivors for association with intracerebral haemorrhage recurrence. We present effects of myeloperoxidase elevating single nucleotide polymorphisms on stroke risk per risk allele, corresponding to a one allele increase in the myeloperoxidase increasing genetic risk score. Genetic determinants of elevated circulating myeloperoxidase levels were associated with both primary intracerebral haemorrhage risk (odds ratio, 1.07, P = 0.04) and recurrent intracerebral haemorrhage risk (hazards ratio, 1.45, P = 0.006). In analysis of ischaemic stroke subtypes, the myeloperoxidase increasing genetic risk score was strongly associated with lacunar subtype only (odds ratio, 1.05, P = 0.0012). These results, demonstrating that common genetic variants that increase myeloperoxidase levels increase risk of primary intracerebral haemorrhage and lacunar stroke, directly implicate the myeloperoxidase pathway in the pathogenesis of cerebral small vessel disease. Because genetic variants are not influenced by environmental exposures, these results provide new support for a causal rather than bystander role for myeloperoxidase in the progression of cerebrovascular disease. Furthermore, these results support a rationale for chronic inflammation as a potential modifiable stroke risk mechanism, and suggest that immune-targeted therapies could be useful for treatment and prevention of cerebrovascular disease.
  •  
9.
  • Roselli, Carolina, et al. (författare)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
10.
  • Traylor, Matthew, et al. (författare)
  • Genetic Variation at 16q24.2 is associated with small vessel stroke.
  • 2017
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 81:3, s. 383-394
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises a quarter of all ischaemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown younger onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger onset SVS population, to identify novel associations with stroke.We used a three-stage age-at-onset informed GWAS to identify novel genetic variants associated with stroke. On identifying a novel locus associated with SVS, we assessed its influence on other small vessel disease phenotypes, as well as on mRNA expression of nearby genes, and on DNA methylation of nearby CpG sites in whole blood and in the fetal brain.We identified an association with SVS in 4,203 cases and 50,728 controls on chromosome 16q24.2 (OR(95% CI)=1.16(1.10-1.22); p=3.2x10(-9) ). The lead SNP (rs12445022) was also associated with cerebral white matter hyperintensities (OR(95% CI)=1.10(1.05-1.16); p=5.3x10(-5) ; N=3,670), but not intracerebral haemorrhage (OR(95% CI)=0.97(0.84-1.12); p=0.71; 1,545 cases, 1,481 controls). rs12445022 is associated with mRNA expression of ZCCHC14 in arterial tissues (p=9.4x10(-7) ), and DNA methylation at probe cg16596957 in whole blood (p=5.3x10(-6) ).16q24.2 is associated with SVS. Associations of the locus with expression of ZCCHC14 and DNA methylation suggest the locus acts through changes to regulatory elements. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy