SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dick D) ;lar1:(kau)"

Sökning: WFRF:(Dick D) > Karlstads universitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engström, Alexander, Ph.D, 1987-, et al. (författare)
  • Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2
  • 2014
  • Ingår i: International Journal of Oncology. - Athens, Greece : Spandidos. - 1019-6439 .- 1791-2423. ; 44:2, s. 385-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid tumors are infiltrated by stroma cells including macrophages and these cells can affect tumor growth, metastasis and angiogenesis. We have investigated the effects of conditioned media (CM) from different macrophages on the proliferation of the colon cancer cell lines HT-29 and CACO-2. CM from THP-1 macrophages and monocyte-derived human macrophages of the M1 phenotype, but not the M2 phenotype, inhibited proliferation of the tumor cells in a dose-dependent manner. Lipopolysaccaharide and interferon gamma was used for differentiation of macrophages towards the M1 phenotype and CM were generated both during differentiation (M1(DIFF)) and after differentiation (M1). M1 and M1(DIFF) CM as well as THP-1 macrophage CM resulted in cell cycle arrest in HT-29 cells with a decrease of cells in S phase and an increase in G(2)/M phase. Treatment of HT-29 cells with M1(DIFF), but not M1 or THP-1 macrophage CM, resulted in apoptosis of about 20% of the tumor cells and this was accompanied by lack of recovery of cell growth after removal of CM and subsequent culture in fresh media. A protein array was used to identify cytokines released from M1 and M2 macrophages. Among the cytokines released by M1 macrophages, tumor necrosis factor alpha and CXCL9 were tested by direct addition to HT-29 cells, but neither affected proliferation. Our results indicate that M1 macrophages inhibit colon cancer cell growth and have the potential of contributing to reducing tumor growth in vivo.
  •  
2.
  • Esguerra, Maricris, 1981, et al. (författare)
  • Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts.
  • 2010
  • Ingår i: Journal of biomedical materials research. Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 93:1, s. 140-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Although commonly used synthetic vascular grafts perform satisfactorily in large caliber blood vessels, they are prone to thrombosis in small diameter vessels. Therefore, small vessels might benefit from tissue engineered vascular grafts. This study evaluated bacterial cellulose (BC) as a potential biomaterial for biosynthetic blood vessels. We implanted the dorsal skinfold chambers in three groups of Syrian golden hamsters with BC (experimental group), polyglycolic acid, or expanded polytetrafluorethylene (control groups). Following implantation, we used intravital fluorescence microscopy, histology, and immunohistochemistry to analyze the biocompatibility, neovascularization, and incorporation of each material over a time period of 2 weeks. Biocompatibility was good in all groups, as indicated by the absence of leukocyte activation upon implantation. All groups displayed angiogenic response in the host tissue, but that response was highest in the polyglycolic acid group. Histology revealed vascularized granulation tissue surrounding all three biomaterials, with many proliferating cells and a lack of apoptotic cell death 2 weeks after implantation. In conclusion, BC offers good biocompatibility and material incorporation compared with commonly used materials in vascular surgery. Thus, BC represents a promising new biomaterial for tissue engineering of vascular grafts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy