SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dickson Suzanne L. 1966) "

Sökning: WFRF:(Dickson Suzanne L. 1966)

  • Resultat 1-10 av 122
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Müller, T D, et al. (författare)
  • Ghrelin.
  • 2015
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 4:6, s. 437-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism.
  •  
2.
  •  
3.
  • Fuente-Martin, E., et al. (författare)
  • Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons.
  •  
4.
  • Hogenkamp, Pleunie, et al. (författare)
  • Calorie anticipation alters food intake after low-caloric but not high-caloric preloads
  • 2013
  • Ingår i: Obesity. - : Wiley. - 1930-7381 .- 1930-739X. ; 21:8, s. 1548-1553
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Cognitive factors and anticipation are known to influence food intake. The current study examined the effect of anticipation and actual consumption of food on hormone (ghrelin, cortisol, insulin) and glucose levels, appetite and ad libitum intake, to assess whether changes in hormone levels might explain the predicted differences in subsequent food intake. Design and Methods: During four breakfast sessions, participants consumed a yogurt preload that was either low-caloric (LC; 180 kcal/300 g) or high-caloric (HC; 530 kcal/300 g), and were provided with either consistent or inconsistent calorie information (i.e. stating the caloric content of the preload was low or high). Appetite ratings and hormone and glucose levels were measured at baseline (t=0), after providing the calorie information about the preload (t=20), after consumption of the preload (t=40) and just before ad libitum intake (t=60). Results: Ad libitum intake was lower after HC preloads (as compared to LC preloads; p<0.01). Intake after LC preloads was higher when provided with (consistent) LC-information (467±254 kcal) as compared to (inconsistent) HC-information (346±210 kcal), but intake after the HC preloads did not depend on the information provided (LC-info: 290±178 kcal, HC-info: 333±179 kcal; caloric load*information p=0.03). Hormone levels did not respond in an anticipatory manner, and the post-prandial responses depended on actual calories consumed. Conclusions: These results suggest that both cognitive and physiological information determine food intake. When actual caloric intake was sufficient to produce physiological satiety, cognitive factors played no role; however, when physiological satiety was limited, cognitively-induced satiety reduced intake to comparable levels.
  •  
5.
  • Challis, B G, et al. (författare)
  • Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36).
  • 2004
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 101:13, s. 4695-700
  • Tidskriftsartikel (refereegranskat)abstract
    • Inactivating mutations of the pro-opiomelanocortin (POMC) gene in both mice and humans leads to hyperphagia and obesity. To further examine the mechanisms whereby POMC-deficiency leads to disordered energy homeostasis, we have generated mice lacking all POMC-derived peptides. Consistent with a previously reported model, Pomc(-/-) mice were obese and hyperphagic. They also showed reduced resting oxygen consumption associated with lowered serum levels of thyroxine. Hypothalami from Pomc(-/-) mice showed markedly increased expression of melanin-concentrating hormone mRNA in the lateral hypothalamus, but expression of neuropeptide Y mRNA in the arcuate nucleus was not altered. Provision of a 45% fat diet increased energy intake and body weight in both Pomc(-/-) and Pomc(+/-) mice. The effects of leptin on food intake and body weight were blunted in obese Pomc(-/-) mice whereas nonobese Pomc(-/-) mice were sensitive to leptin. Surprisingly, we found that Pomc(-/-) mice maintained their acute anorectic response to peptide-YY(3-36) (PYY(3-36)). However, 7 days of PYY(3-36) administration had no effect on cumulative food intake or body weight in wild-type or Pomc(-/-) mice. Thus, POMC peptides seem to be necessary for the normal response of energy balance to high-fat feeding, but not for the acute anorectic effect of PYY(3-36) or full effects of leptin on feeding. The finding that the loss of only one copy of the Pomc gene is sufficient to render mice susceptible to the effects of high fat feeding emphasizes the potential importance of this locus as a site for gene-environment interactions predisposing to obesity.
  •  
6.
  • de la Cour, Charlotta, et al. (författare)
  • Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice.
  • 2005
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 54:7, s. 907-13
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: The gastric hormone ghrelin has been reported to stimulate food intake, increase weight gain, and cause obesity but its precise physiological role remains unclear. We investigated the long term effects of gastrectomy evoked ghrelin deficiency and of daily ghrelin injections on daily food intake, body weight, fat mass, lean body mass, and bone mass in mice. METHODS: Ghrelin was given by subcutaneous injections (12 nmol/mouse once daily) for eight weeks to young female mice subjected to gastrectomy or sham operation one week previously. RESULTS: Gastrectomy reduced plasma concentrations of total ghrelin (octanoylated and des-octanoylated) and active (octanoylated) ghrelin by approximately 80%. Immediately after injection of ghrelin, the plasma concentration was supraphysiological and was still elevated 16 hours later. Daily food intake was not affected by either gastrectomy or ghrelin treatment. The effect of ghrelin on meal initiation was not studied. At the end point of the study, mean body weight was 15% lower in gastrectomised mice than in sham operated mice (p<0.001); daily ghrelin injections for eight weeks partially prevented this weight loss. In sham operated mice, ghrelin had no effect on body weight. The weight of fat was reduced in gastrectomised mice (-30%; p<0.01). This effect was reversed by ghrelin, enhancing the weight of fat in sham operated mice also (+20%; p<0.05). Gastrectomy reduced lean body mass (-10%; p<0.01) and bone mass (-20%; p<0.001) compared with sham operated mice. Ghrelin replacement prevented the gastrectomy induced decrease in lean body mass but did not affect bone. In sham operated mice, ghrelin affected neither of these two parameters. CONCLUSIONS: Ghrelin replacement partially reversed the gastrectomy induced reduction in body weight, lean body mass, and body fat but not in bone mass. In sham operated mice, ghrelin only increased fat mass. Our results suggest that ghrelin is mainly concerned with the control of fat metabolism and that ghrelin replacement therapy may alleviate the weight loss associated with gastrectomy.
  •  
7.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Central NMU signaling in body weight and energy balance regulation: evidence from NMUR2 deletion and chronic central NMU treatment in mice.
  • 2009
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 297:3, s. E708-16
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 microg x day(-1) x mouse(-1)) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet. In addition, female (but not male) NMUR2-null mice had increased body weight and body fat mass when fed a high-fat diet but lacked a clear body weight phenotype when fed a standard diet compared with wild-type littermates. Furthermore, female (but not male) NMUR2-null mice fed a high-fat diet were protected from central NMU-induced body weight loss compared with littermate wild-type mice. Thus, we provide the first evidence that long-term central NMU treatment reduces body weight, food intake, and adiposity and that central NMUR2 signaling is required for these effects in female but not male mice.
  •  
8.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Ghrelin increases intake of rewarding food in rodents
  • 2010
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 15:3, s. 304-311
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.
  •  
9.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice.
  • 2006
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 290:2, s. E317-25
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.
  •  
10.
  • Hansson, Caroline, 1981, et al. (författare)
  • Ghrelin Influences Novelty Seeking Behavior in Rodents and Men
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents. Citation: Hansson C, Shirazi RH, Naslund J, Vogel H, Neuber C, et al. (2012) Ghrelin Influences Novelty Seeking Behavior in Rodents and Men. PLoS ONE 7(12): e50409. doi:10.1371/journal.pone.0050409
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 122
Typ av publikation
tidskriftsartikel (106)
konferensbidrag (10)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (121)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Dickson, Suzanne L., ... (122)
Egecioglu, Emil, 197 ... (25)
Skibicka, Karolina P (24)
Hansson, Caroline, 1 ... (16)
Jansson, John-Olov, ... (16)
Ohlsson, Claes, 1965 (13)
visa fler...
Schéle, Erik, 1980 (13)
Vogel, Heike (13)
Adan, Roger A H (12)
Jerlhag, Elisabeth, ... (11)
Engel, Jörgen, 1942 (11)
Bake, Tina (10)
Cedernaes, Jonathan (8)
Le May, Marie (8)
Peris-Sampedro, Fion ... (8)
Stoltenborg, Iris (8)
Adan, R. A. H. (7)
Taube, Magdalena (7)
Alvarez-Crespo, Mayt ... (7)
Salomé, Nicolas (7)
Rabasa-Papio, Cristi ... (7)
Schiöth, Helgi B. (6)
Benedict, Christian (6)
Schele, Erik (6)
Broman, Jan-Erik (5)
Anesten, Fredrik (5)
Shirazi, Rozita H. (5)
Liposits, Z. (4)
Bellman, Jakob (4)
Haage, David (4)
Karlsson-Lindahl, Li ... (4)
Hägg, Daniel, 1974 (4)
Landgren, Sara, 1980 (3)
Hebebrand, J. (3)
Nissbrandt, Hans, 19 ... (3)
Farkas, I. (3)
Bohlooly-Yeganeh, Mo ... (3)
Palsdottir, Vilborg, ... (3)
Edvardsson, Christia ... (3)
Hogenkamp, Pleunie S (3)
Pinnock, S B (3)
Bjursell, Mikael, 19 ... (3)
Rångtell, Frida H. (3)
de Git, K. C. G. (3)
van der Plasse, G. (3)
Perrissoud, Daniel (3)
Svensson, Lennart, 1 ... (3)
Lall, S (3)
Zigman, J M (3)
Askevik, Kaisa (3)
visa färre...
Lärosäte
Göteborgs universitet (122)
Uppsala universitet (10)
Karolinska Institutet (6)
Umeå universitet (5)
Lunds universitet (4)
Stockholms universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Linköpings universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (122)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (113)
Naturvetenskap (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy