SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Diekötter Tim) "

Sökning: WFRF:(Diekötter Tim)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
2.
  • Birkhofer, Klaus, et al. (författare)
  • Density-dependent and -independent effects on the joint use of space by predators and prey in terrestrial arthropod food-webs
  • 2011
  • Ingår i: Oikos. - : Wiley. - 1600-0706 .- 0030-1299. ; 120:11, s. 1705-1711
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial distribution of predators and their prey is affected by their joint use of space. While the formation of such spatial patterns may be driven by density-dependent and -independent factors our knowledge on the contribution of different land-use activities on the formation of spatial patterns between predators and prey remains very limited. Agriculture is one of the most prevailing land-use activities with strong effects on invertebrate densities and structural habitat conditions. Here, we used replicated conventionally and organically managed winter wheat fields to investigate the effects of agricultural land-use on the spatial patterns of generalist predators and decomposer prey. We then identified the explanatory power of density-dependent (prey and predator activity density) and density-independent (vegetation structure) predictors for the observed spatial patterns. Generalist predators were regularly distributed only in conventionally managed fields and this pattern intensified with decreasing Collembola prey availability and increasing spider activity density. Segregation between carabid and spider predators was strongest in fields with lowest wheat plant height, suggesting more intense intraguild interactions in structurally less complex habitats. Collembola were aggregated independent of management and aggregation was strongest in fields with highest Collembola and carabid activity density. Spiders and Collembola prey were associated, but higher aphid densities under conventional management weakened or interrupted this spatial relationship. We conclude that active control of crop plant physiognomy by growth hormones and herbicides in conventionally managed fields promotes predator–predator segregation and that a high availability of aphid prey seems to decouple predator–Collembola prey associations. Our results emphasise the need for a more mechanistic understanding of the effects of land-use on the formation of spatial patterns and species interactions, especially under scenarios of environmental change and an ongoing loss of biodiversity.
  •  
3.
  • Birkhofer, Klaus, et al. (författare)
  • General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.
  •  
4.
  • Birkhofer, Klaus, et al. (författare)
  • Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities
  • 2017
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 86:3, s. 511-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats.
  •  
5.
  • Birkhofer, Klaus, et al. (författare)
  • Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness
  • 2011
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 43:10, s. 2200-2207
  • Tidskriftsartikel (refereegranskat)abstract
    • Edaphic fauna contributes to important ecosystem functions in grassland soils such as decomposition and nutrient mineralization. Since this functional role is likely to be altered by global change and associated shifts in plant communities, a thorough understanding of large scale drivers on below-ground processes independent of regional differences in soil type or climate is essential. We investigated the relationship between abiotic (soil properties, management practices) and biotic (plant functional group composition, vegetation characteristics, soil fauna abundance) predictors and feeding activity of soil fauna after accounting for sample year and study region. Our study was carried out over a period of two consecutive years in 92 agricultural grasslands in three regions of Germany, spanning a latitudinal gradient of more than 500 km. A structural equation model suggests that feeding activity of soil fauna as measured by the bait-lamina test was positively related to legume and grass species richness in both years. Most probably, a diverse vegetation promotes feeding activity of soil fauna via alterations of both microclimate and resource availability. Feeding activity of soil fauna also increased with earthworm biomass via a pathway over Collembola abundance. The effect of earthworms on the feeding activity in soil may be attributed to their important role as ecosystem engineers. As no additional effects of agricultural management such as fertilization, livestock density or number of cuts on bait consumption were observed, our results suggest that the positive effect of legume and grass species richness on the feeding activity in soil fauna is a general one that will not be overruled by regional differences in management or environmental conditions. We thus suggest that agri-environment schemes aiming at the protection of belowground activity and associated ecosystem functions in temperate grasslands may generally focus on maintaining plant diversity, especially with regard to the potential effects of climate change on future vegetation structure.
  •  
6.
  • De Palma, Adriana, et al. (författare)
  • Predicting bee community responses to land-use changes : effects of geographic and taxonomic biases
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
  •  
7.
  • Diekötter, Tim, et al. (författare)
  • Landscape and management effects on structure and function of soil arthropod communities in winter wheat
  • 2010
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 1873-2305 .- 0167-8809. ; 137:1-2, s. 108-112
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluates the impact of agricultural management (organic vs. conventional) and landscape context on species richness and abundance of five soilarthropod taxa (ground beetles, spiders, springtails, millipedes, woodlice) and associated ecosystem functions (soil biological activity, weed seed predation, litter decomposition). A significant interaction between management type and landscape context was revealed in several cases. Activity density of millipedes and wood lice and species richness of ground beetles were higher in fields where local and regional management types were complementary, indicating a beneficial effect of environmental heterogeneity. In addition, seed predation on arable weeds was higher in organically than conventionally managed fields. It is concluded that the effect of agricultural management on soilarthropod biodiversity and functioning is often context dependent. The diversity of functionally important taxa such as ground beetles and decomposers may be enhanced by increasing environmental heterogeneity, a measure that is also beneficial for other components of agrobiodiversity. Thus, in a conventional agricultural context even managing only a fraction of fields organically may help to increase environmental heterogeneity and thereby promote soilarthropod diversity and the associated ecosystem functions.
  •  
8.
  • Diekötter, Tim, et al. (författare)
  • Organic farming affects the potential of a granivorous carabid beetle to control arable weeds at local and landscape scales
  • 2016
  • Ingår i: Agricultural and Forest Entomology. - : Wiley. - 1461-9555. ; 18:2, s. 167-173
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic farming not only increases plant diversity, but also simultaneously promotes biological weed control through provisioning of ample resources to seed predators. Harpalus affinis (Schrank, 1781) was collected from organically or conventionally managed winter-wheat fields with high or low surrounding shares of organic fields, aiming to test the impact of agricultural management on its activity density, body size and nutritional condition. Body size and nutritional condition were then related to the arable weed seed predation of this granivorous carabid beetle. Activity density of H. affinis was 3.5-fold higher in organically compared with conventionally managed fields, if these were primarily surrounded by conventional fields. Body size was larger in fields surrounded by large proportions of organically managed land, independent of local management. The nutritional condition of beetles was unaffected by local or landscape scale farming. Per capita seed predation significantly increased with body size, whereas nutritional condition had no effect. The results of the present study suggest that organic farming at local and landscape scales enhances the potential of species to control arable weeds by increasing activity densities and intraspecific body size. Seed predation therefore not only depends on local and landscape effects on the community composition of local guilds of granivores, but also on the contribution of individual species to this important ecosystem service.
  •  
9.
  • Herbertsson, Lina, et al. (författare)
  • Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes
  • 2021
  • Ingår i: Plant Ecology and Evolution. - : Societe Royale de Botanique de Belgique. - 2032-3913 .- 2032-3921. ; 154:3, s. 341-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: Agricultural intensification and loss of farmland heterogeneity have contributed to population declines of wild bees and other pollinators, which may have caused subsequent declines in insect-pollinated wild plants.Material and methods: Using data from 37 studies on 22 pollinator-dependent wild plant species across Europe, we investigated whether flower visitation and seed set of insect-pollinated plants decline with an increasing proportion of arable land within 1 km.Key results: Seed set increased with increasing flower visitation by bees, most of which were wild bees, but not with increasing flower visitation by other insects. Increasing proportion of arable land had a strongly variable effect on seed set and flower visitation by bees across studies.Conclusion:Factors such as landscape configuration, local habitat quality, and temporally changing resource availability (e.g. due to mass-flowering crops or honey bee hives) could have modified the effect of arable land on pollination. While our results highlight that the persistence of wild bees is crucial to maintain plant diversity, we also show that pollen limitation due to declining bee populations in homogenized agricultural landscapes is not a universal driver causing parallel losses of bees and insect-pollinated plants. 
  •  
10.
  • Lichtenberg, Elinor M., et al. (författare)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy