SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dillman Allissa) "

Sökning: WFRF:(Dillman Allissa)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
2.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
3.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
4.
  • Dillman, Allissa (författare)
  • Exploring the transcriptome of the brain
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Our knowledge of the transcriptome has become much more complex since the days of the central dogma of molecular biology. We now know that splicing takes place to create potentially thousands of isoforms from a single gene, and we know that RNA does not always faithfully recapitulate DNA if RNA editing occurs. Collectively, these observations show that the transcriptome is amazingly rich with intricate regulatory mechanisms for overall gene expression, splicing, and RNA editing. Genetic variability can play a role in controlling gene expression, which can be identified by examining expression quantitative trait loci (eQTLs). eQTLs are genomic regions where genetic variants, including single nucleotide polymorphisms (SNPs) show a statistical association with expression of mRNA transcripts. In humans, many SNPs are also associated with disease, and have been identified using genome wide association studies (GWAS) but the biological effects of those SNPs are usually not known. If SNPs found in GWAS are also found in eQTLs, then one could hypothesize that expression levels may contribute to disease risk. Performing eQTL analysis with GWAS SNPs in both blood and brain, specifically the frontal cortex and the cerebellum, we found both shared and tissue unique eQTLS. The identification of tissue-unique eQTLs supports the argument that choice of tissue type is important in eQTL studies (Paper I). Aging is a complex process with the mechanisms underlying aging still being poorly defined. There is evidence that the transcriptome changes with age, and hence we used the brain dataset from our first paper as a discovery set, with an additional replication dataset, to investigate any aging-gene expression associations. We found evidence that many genes were associated with aging. We further found that there were more statically significant expression changes in the frontal cortex versus the cerebellum, indicating that brain regions may age at different rates. As the brain is a heterogeneous tissue including both neurons and non-neuronal cells, we used LCM to capture Purkinje cells as a representative neuronal type and repeated the age analysis. Looking at the discovery, replication and Purkinje cell datasets we found five genes with strong, replicated evidence of age-expression associations (Paper II). Being able to capture and quantify the depth of the transcriptome has been a lengthy process starting with methods that could only measure a single gene to genome-wide techniques such as microarray. A recently developed technology, RNA-Seq, shows promise in its ability to capture expression, splicing, and editing and with its broad dynamic range quantification is accurate and reliable. RNA-Seq is, however, data intensive and a great deal of computational expertise is required to fully utilize the strengths of this method. We aimed to create a small, well-controlled, experiment in order to test the performance of this relatively new technology in the brain. We chose embryonic versus adult cerebral cortex, as mice are genetically homogenous and there are many known differences in gene expression related to brain development that we could use as benchmarks for analysis testing. We found a large number of differences in total gene expression between embryonic and adult brain. Rigorous technical and biological validation illustrated the accuracy and dynamic range of RNA-Seq. We were also able to interrogate differences in exon usage in the same dataset. Finally we were able to identify and quantify both well-known and novel A-to-I edit sites. Overall this project helped us develop the tools needed to build usable pipelines for RNA-Seq data processing (Paper III). Our studies in the developing brain (Paper III) illustrated that RNA-Seq was a useful unbiased method for investigating RNA editing. To extend this further, we utilized a genetically modified mouse model to study the transcriptomic role of the RNA editing enzyme ADAR2. We found that ADAR2 was important for editing of the coding region of mRNA as a large proportion of RNA editing sites in coding regions had a statistically significant decrease in editing percentages in Adar2 -/-Gria2 R/R mice versus controls. However, despite indications in the literature that ADAR2 may also be involved in splicing and expression regulatory machinery we found no changes in gene expression or exon utilization in Adar2 -/-Gria2 R/R mice as compared to their littermate controls (Paper IV). In our final study, based on the methods developed in Papers III and IV, we revisited the idea of age related gene expression associations from Paper II. We used a subset of human frontal cortices for RNA sequencing. Interestingly we found more gene expression changes with aging compared to the previous data using microarrays in Paper II. When the significant gene lists were analysed for gene ontology enrichment, we found that there was a large number of downregulated genes involved in synaptic function while those that were upregulated had enrichment in immune function. This dataset illustrates that the aging brain may be predisposed to the processes found in neurodegenerative diseases (Paper V).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy