SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ding B) ;lar1:(ltu)"

Sökning: WFRF:(Ding B) > Luleå tekniska universitet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhalla, Aditya, et al. (författare)
  • Engineered Lignin in Poplar Biomass Facilitates Cu-Catalyzed Alkaline-Oxidative
  • 2018
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 6:3, s. 2932-2941
  • Tidskriftsartikel (refereegranskat)abstract
    • Both untransformed poplar and genetically modified “zip-lignin” poplar, in which additional ester bonds were introduced into the lignin backbone, were subjected to mild alkaline and copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment. Our hypothesis was that the lignin in zip-lignin poplar would be removed more easily than lignin in untransformed poplar during this alkaline pretreatment, resulting in higher sugar yields following enzymatic hydrolysis. We observed improved glucose and xylose hydrolysis yields for zip-lignin poplar compared to untransformed poplar following both alkaline-only pretreatment (56% glucose yield for untransformed poplar compared to 67% for zip-lignin poplar) and Cu-AHP pretreatment (77% glucose yield for untransformed poplar compared to 85% for zip-lignin poplar). Compositional analysis, glycome profiling, and microscopy all supported the notion that the ester linkages increase delignification and improve sugar yields. Essentially no differences were noted in the molecular weight distributions of solubilized lignins between the zip-lignin poplar and the control line. Significantly, when zip-lignin poplar was utilized as the feedstock, hydrogen peroxide, catalyst, and enzyme loadings could all be substantially reduced while maintaining high sugar yields.
  •  
2.
  • Bolton, Kim, et al. (författare)
  • Carbon Nanotube Growth Mechanisms
  • 2007
  • Ingår i: Proceedings of Diamond 2007, the 18th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide.
  • Konferensbidrag (refereegranskat)abstract
    • We have used a variety of computational methods to study key aspects of single-walled carbon nanotube (SWNT) growth. Molecular dynamics (MD) studies based on an empirical force field showed; for example; why SWNT growth occurs in a temperature window and why; for 1-2 nm catalyst particles; the SWNT diameter varies linearly with the size of the particle. In addition; the liquid or solid phase of the catalyst particle is strongly dependent on particle size; and smaller particles (< 1.5 nm) are liquid at typical chemical vapor deposition temperatures whereas larger particles (> 5 nm) are solid. The phase of particles of intermediate sizes depends on the exact temperature and on their carbon content. The effect of substrates on metal-carbide properties and SWNT growth has been studied by combing density functional (DFT) and MD methods. A major effect of flat; inert substrates is to flatten the catalyst particles thereby increasing their melting points. DFT has also been used to study the catalyst-SWNT interaction which is critical for the growth of long SWNTs; and is also being used to study the importance of the SWNT cap structure on its chirality. This knowledge is important; for example; when using SWNTs as seeds for the growth of longer nanotubes.
  •  
3.
  •  
4.
  •  
5.
  • Ge, Yaxin, 1992, et al. (författare)
  • Effects of used bed materials on char gasification : Investigating the role of element migration using online alkali measurements
  • 2022
  • Ingår i: Fuel processing technology. - : Elsevier. - 0378-3820 .- 1873-7188. ; 238
  • Tidskriftsartikel (refereegranskat)abstract
    • Online alkali measurements using surface ionization are employed to study alkali release during heating of used industrial fluidized bed materials and gasification of biomass-based char and bed material mixtures. The alkali release from the bed materials starts at 820 °C and increases with temperature, the time a bed material has experienced in an industrial process, and in the presence of CO2. Online alkali measurement during heating of char mixed with used bed material shows significant alkali uptake by the char. Complementary SEM-EDS studies confirm the alkali results and indicate that other important inorganic elements including Si, Mg, and Ca also migrate from the bed material to the char. The migration of elements initially enhances alkali release and char reactivity, but significantly reduces both during the final stage of the gasification. The observed effects on char gasification become more pronounced with increasing amount of bed material and increasing time the material experienced in an industrial process. The ash-layer on the used bed material is concluded to play an important role as a carrier of alkali and other active components. The char and bed material systems are closely connected under operational conditions, and their material exchange has important implications for the thermal conversion.
  •  
6.
  • Ji, Cheng, et al. (författare)
  • Crystallography of low Z material at ultrahigh pressure : Case study on solid hydrogen
  • 2020
  • Ingår i: Matter and Radiation at Extremes. - : American Institute of Physics (AIP). - 2468-2047 .- 2468-080X. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensed matter. However, the only way to determine crystal structures of materials above 100 GPa, namely, X-ray diffraction (XRD), especially for low Z materials, remains nontrivial in the ultrahigh-pressure region, even with the availability of brilliant synchrotron X-ray sources. In this work, we perform a systematic study, choosing hydrogen (the lowest X-ray scatterer) as the subject, to understand how to better perform XRD measurements of low Z materials at multimegabar pressures. The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254 GPa at room temperature [C. Ji et al., Nature 573, 558–562 (2019)]. We present our discoveries and experiences with regard to several aspects of this work, namely, diamond anvil selection, sample configuration for ultrahigh-pressure XRD studies, XRD diagnostics for low Z materials, and related issues in data interpretation and pressure calibration. We believe that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures, eventually testing structural models of metallic hydrogen.
  •  
7.
  • Larsson, Andreas, et al. (författare)
  • Modelling of Carbon Nanotube Catalytic Growth
  • 2008
  • Konferensbidrag (refereegranskat)abstract
    • Carbon nanotubes (CNTs) have; due to their remarkable mechanical; electronic and thermal properties; many suggested uses; and have even been demonstrated as interconnects and nano-transistors in laboratory built devices [1-4]. The reason CNTs are not yet incorporated into electronics is due to growth control and placement issues. With present day state-of-the-art techniques it is not possible to grow CNTs with only one property (i.e. either all metallic or all semiconducting); which presents the first and principal hurdle for the utilisation of CNTs in semiconductor industry. It is; however; possible to grow CNTs of a certain type (multi-walled; double-walled; or single walled); within a rather narrow diameter distribution. It is also well understood how the orientation of the honey-comb structure relative to the CNT axis determines the property of the CNT itself. The problem lies in realizing growth of CNTs with control over this internal graphene structuring. We have performed first-principles calculations of how single-walled carbon nanotubes (SWNTs) bond with different metal nanoparticles explaining why the traditional catalysts (Fe; Co; Ni) are more successful than other metals (Cu; Pd; Au) [5]; and how this realization relates to new nanocomposite catalyst particles (Cu/Mo) [6]. We will present our contribution to understanding the mechanism of catalytic CNT growth; since it is only through better knowledge that property-controlled growth of CNTs can be achieved
  •  
8.
  •  
9.
  •  
10.
  • Zoback, Mary Lou, et al. (författare)
  • Global patterns of tectonic stress
  • 1989
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 341:6240, s. 291-298
  • Forskningsöversikt (refereegranskat)abstract
    • Regional patterns of present-day tectonic stress can be used to evaluate the forces acting on the lithosphere and to investigate intraplate seismicity. Most intraplate regions are characterized by a compressional stress regime; extension is limited almost entirely to thermally uplifted regions. In several plates the maximum horizontal stress is subparallel to the direction of absolute plate motion, suggesting that the forces driving the plates also dominate the stress distribution in the plate interior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy