SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dite GS) "

Sökning: WFRF:(Dite GS)

  • Resultat 1-10 av 12
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnson, Nichola, et al. (författare)
  • Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study
  • 2014
  • Ingår i: Breast Cancer Research. - BioMed Central (BMC). - 1465-5411. ; 16:R51, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age <= 50 years. Methods: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics. Results: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P-trend = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P-trend = 0.005) but not cases (P-trend = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P-het = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age >= 15 years (ORhet = 0.84, 95% CI 0.75, 0.94; ORhom = 0.81, 95% CI 0.51, 1.30; P-trend = 0.002) but not for those who had their menarche age <= 11 years (ORhet = 1.06, 95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; P-trend = 0.29). Conclusions: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.
2.
  • Purrington, Kristen S, et al. (författare)
  • Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade.
  • 2014
  • Ingår i: Human Molecular Genetics. - Oxford University Press. - 0964-6906. ; 23:22, s. 6034-6046
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2,156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n=39,067 cases; n=42,106 controls). SNPs in TACC2 (rs17550038: odds ratio (OR)=1.24, 95% CI 1.16-1.33, p=4.2x10(-10)) and EIF3H (rs799890: OR=1.07, 95% confidence interval (CI) 1.04-1.11, p=8.7x10(-6)) were significantly associated with risk of low grade breast cancer. The TACC2 signal was retained (rs17550038: OR=1.15, 95% CI 1.07-1.23, p=7.9x10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high grade breast cancer risk (p=2.1x10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
  •  
3.
  •  
4.
  • Fachal, Laura, et al. (författare)
  • Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes
  • 2020
  • Ingår i: Nature genetics. - 1546-1718. ; 52:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
  •  
5.
  • Figlioli, G, et al. (författare)
  • The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
  • 2019
  • Ingår i: NPJ breast cancer. - 2374-4677. ; 5, s. 38
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors. © 2019, The Author(s).
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy