SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dixon Ray) "

Sökning: WFRF:(Dixon Ray)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Beaty, D.W, et al. (författare)
  • The potential science and engineering value of samples delivered to Earth by Mars sample return : International MSR Objectives and Samples Team (iMOST)
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:S1, s. 3-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Executive Summary: Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub-Objectives for MSR Identified by iMOST: Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub-objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life-bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest-lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time-variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near-surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub-objectives: 2.1 Assess and characterize carbon, including possible organic and pre-biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon-based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope-based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater-dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact-generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine-grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in-situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long-term human presence on Mars. Summary of iMOST Findings: Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M-2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M-2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on-going work of the multi-agency fleet of Mars orbiters. (B) Local context will be established at field area- to outcrop- to hand sample- to hand lens scale using the instruments carried by M-2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well-chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record. In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored. This consideration should be incorporated into sample selection and the design of the suites. The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible.
  •  
5.
  •  
6.
  • Jarvis, Erich D., et al. (författare)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
7.
  • Lönneborg, Rosa, 1979- (författare)
  • In search of a biosensor for DNT detection : Studies of inducer response and specificity of DntR
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The primary aim of the work presented in this thesis was to change the inducer specificity of the DntR protein in order to improve the response to DNT. The long-term goal is to use this protein in a biosensor for DNT, a signature compound for detection of the explosive TNT. Another aspect of this work was to understand the mechanisms of inducer binding and how the binding of an inducer molecule changes the DntR structure into a state that triggers transcriptional activation. In the papers included in this thesis the inducer specificity of wt DntR has been investigated under different conditions. The functional effects of specific mutations have also been investigated, in some cases in combination with structure determination using X-ray crystallography. In addition, structural data offering insights into the details of inducer binding and conformational changes upon inducer binding are presented and discussed in terms of mechanisms for transcriptional activation by DntR. Furthermore, a directed evolution strategy was employed in order to find variants of DntR with improved response to DNT. A variant with a large improvement in the DNT response was isolated and characterized. In optimized growth conditions, this DntR variant had a nearly 10-fold increase in fluorescence in response to DNT compared to wt DntR. Specific substitutions found in this DntR variant are suggested to be important for changing the inducer response.
  •  
8.
  • Seibt, Henrik, 1987- (författare)
  • Deciphering control of Mechano-Transcription Activators of σ54-RNA polymerase
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To survive and proliferate, bacteria have to respond to a plethora of fluctuating signals within their habitats. Transcriptional control is one crucial entry point for such signal-responsive adaption responses. In this thesis I present new insights into the signal-responsive control of two specific transcriptional regulators that belong to a specialized class of mechano-transcriptional regulators. These regulators employ ATP-hydrolysis to engage and remodel σ54-RNA polymerase, which allows transcriptional initiation from the promoters they control. In the first part of my thesis I present findings on DmpR – the obligate activator of genes involved in (methyl)phenol catabolism by Pseudomonas putida. DmpR is a sensory-regulator that can only transition to its active multimeric form upon binding a phenolic compound and ATP. Previous work has established that binding of phenolic effectors by the N-terminal domain of DmpR relieves inter-domain repression of its central ATPase domain and further that a structured inter-domain linker between the phenolic- and ATP-binding domains is involved in coupling these processes. However, the mechanism underlying this coupling remained enigmatic. Here I present evidence that a tyrosine residue of the inter-domain linker (Y233) serves as a gatekeeper to constrain ATP-hydrolysis and phenolic-responsive transcriptional activation by DmpR. A model is presented in which binding of phenolics relocates Y233 from the ATP-binding site to synchronise signal-reception with multimerisation to provide appropriate sensitivity of the transcriptional response. Given that Y233 counterparts are present in many ligand-responsive mechano-transcriptional regulators, the model is likely to be pertinent for numerous members of this family. The finding that an alanine substitution of Y233 enhances transcriptional responses adds a new approach to manipulating the sensitivity of this class of proteins and thereby generate hyper-sensitive detectors of aromatic pollutants for use in safe guarding the environment.The second part of my thesis concerns VCA0117 – a master regulator of the type VI contractile nanomachinery of Vibrio cholerae, which it utilizes to introduce toxic proteins into both bacterial and eukaryotic cells. These type VI-mediated properties enable V. cholerae to establish infections and to thrive in niches co-occupied by predators and competing bacteria. VCA0117 is strictly required for functionality of the type VI system through its role in controlling production of a key type VI structural protein called Hcp, which is encoded within two small s54-dependent operons. This regulatory role is conserved in both pandemic and non-pandemic V. cholerae strains. However, while some strains come pre-equipped with a functional system, others do not, and require specific growth conditions of low temperature and high osmolarity for type VI expression. Within this work, integration of these regulatory growth signals was traced to the activity of the promoter controlling a large operon in which many components of the machinery and VCA0117 is itself encoded. This in turn elevates the levels of VCA0117, which is all that is required to overcome the need for the specialized growth conditions of low temperature and/or high osmolarity. A model is presented in which signal integration via the activity of the large operon promoter to elevate levels of VCA0117 ultimately dictates a sufficient supply of the missing Hcp component required for completion of a functional type VI machine. Repercussions of the proposed quantity-based regulatory circuit of VCA0117 for generating bacterial sub-populations that are differentially “fit” for different environmental eventualities are discussed.
  •  
9.
  • Teixeira, Pedro Filipe, 1983- (författare)
  • PII proteins as global regulators of bacterial nitrogen metabolism
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nitrogen is an essential element to sustain life, being a component of most biological macromolecules. In spite of the abundance of gaseous N2, the availability of nitrogen compounds that can be readily used by most microorganisms is scarce and its production energetically demanding. Due to the central importance of nitrogen metabolism, most microorganisms evolved elaborate mechanisms to ensure efficient regulation, balancing substrate availability, product formation and energy expenditure. In most bacteria, many archaea and some plants, the different aspects of nitrogen metabolism are coordinated by members of the PII family of signal transduction proteins, acting as fundamental molecular messengers controlling several cellular processes. In proteobacteria, including the nitrogen fixing organism Rhodospirillum rubrum, these proteins are involved in regulation at different levels: they regulate gene expression, modulating the activity of several transcription factors; they control the flux through the ammonium transport protein (AmtB); they influence the activity of key metabolic enzymes, e.g. glutamine synthetase (GS) and nitrogenase. The signal sensing and integration by these proteins is achieved in two different yet interdependent strategies: allosteric regulation (by the binding of metabolites like ATP, ADP, 2-oxoglutarate) and reversible post-translational modification. Signal integration likely results in different conformations of the proteins, influencing the direct protein-protein interaction with the cellular targets. In the present work, using R. rubrum as a model organism, we have studied some aspects of the biochemistry of PII proteins in terms of regulatory interactions with the ammonium transport protein AmtB1 and the adenylyltransferase GlnE (involved in GS regulation). Additionally, we have investigated the post-translational modification of PII proteins, showing for the first time in vivo in addition in vitro selectivity in the modification of different PII proteins. Our results contributed to elucidate several new aspects in the regulation by PII proteins and also strengthened the idea that these proteins act as global regulators in the context of bacterial nitrogen metabolism.
  •  
10.
  • Wang, Helen, et al. (författare)
  • Energy shifts induce membrane sequestration of DraG in Rhodospirillum rubrum independent of the ammonium transporters and diazotrophic conditions
  • 2018
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 365:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm here that the ammonium transporter, AmtB1, rather than its paralog AmtB2, is required for ammonium induced switch-off. Amongst several substitutions at the N100 position in DraG, only N100K failed to locate to the membrane following ammonium shock, suggesting loss of interaction through charge repulsion. When switch-off was induced by lowering energy levels, either by darkness during photosynthetic growth or oxygen depletion under respiratory conditions, reversible membrane sequestration of DraG was independent of AmtB proteins and occurred even under non-diazotrophic conditions. We propose that under these conditions, changes in redox status or possibly membrane potential induce interactions between DraG and another membrane protein in response to the energy status.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy