SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Djukanovic R.) "

Sökning: WFRF:(Djukanovic R.)

  • Resultat 1-10 av 43
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bousquet, J., et al. (författare)
  • Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)
  • 2016
  • Ingår i: Clinical and Translational Allergy. - BIOMED CENTRAL LTD. - 2045-7022. ; 6
  • Forskningsöversikt (övrigt vetenskapligt)abstract
    • Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un Vleillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
2.
  • Bousquet, J., et al. (författare)
  • Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)
  • 2016
  • Ingår i: Clinical and Translational Allergy. - BioMed Central. - 2045-7022. ; 6:1, s. 1-18
  • Forskningsöversikt (refereegranskat)abstract
    • Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
3.
  • Bousquet, J., et al. (författare)
  • Integrated care pathways for airway diseases (AIRWAYS-ICPs)
  • 2014
  • Ingår i: European Respiratory Journal. - European Respiratory Society: ERJ. - 0903-1936. ; 44:2, s. 304-323
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYS-ICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).
  •  
4.
  • Bousquet, J, et al. (författare)
  • BUILDING BRIDGES FOR INNOVATION IN AGEING: : SYNERGIES BETWEEN ACTION GROUPS OF THE EIP ON AHA
  • 2017
  • Ingår i: The Journal of Nutrition, Health & Aging. - SPRINGER FRANCE. - 1279-7707. ; 21:1, s. 92-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Östling, Jörgen, et al. (författare)
  • IL-17-high asthma with features of a psoriasis immunophenotype
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - Elsevier. - 0091-6749 .- 1097-6825. ; 144:5, s. 1198-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required.Objective: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity.Methods: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17–high and IL-13–high asthma phenotypes.Results: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17–high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and β-defensin.Conclusion: The IL-17–high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.
  •  
9.
  • Schofield, James P. R., et al. (författare)
  • Stratification of asthma phenotypes by airway proteomic signatures
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - Elsevier. - 0091-6749 .- 1097-6825. ; 144:1, s. 70-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
  • [1]2345Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy