SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Domis Lisette de Senerpont) "

Sökning: WFRF:(Domis Lisette de Senerpont)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aben, Ralf C. H., et al. (författare)
  • Cross continental increase in methane ebullition under climate change
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) strongly contributes to observed global warming. As natural CH4 emissions mainly originate from wet ecosystems, it is important to unravel how climate change may affect these emissions. This is especially true for ebullition (bubble flux from sediments), a pathway that has long been underestimated but generally dominates emissions. Here we show a remarkably strong relationship between CH4 ebullition and temperature across a wide range of freshwater ecosystems on different continents using multi-seasonal CH4 ebullition data from the literature. As these temperature-ebullition relationships may have been affected by seasonal variation in organic matter availability, we also conducted a controlled year-round mesocosm experiment. Here 4 degrees C warming led to 51% higher total annual CH4 ebullition, while diffusion was not affected. Our combined findings suggest that global warming will strongly enhance freshwater CH4 emissions through a disproportional increase in ebullition (6-20% per 1 degrees C increase), contributing to global warming.
  •  
2.
  • Donis, Daphne, et al. (författare)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
3.
  • Mantzouki, Evanthia, et al. (författare)
  • Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
  • 2018
  • Ingår i: Toxins. - : MDPI. - 2072-6651 .- 2072-6651. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
  •  
4.
  • Domis, Lisette N. De Senerpont, et al. (författare)
  • Plankton dynamics under different climatic conditions in space and time
  • 2013
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 58:3, s. 463-482
  • Forskningsöversikt (refereegranskat)abstract
    • 1.Different components of the climate system have been shown to affect temporal dynamics in natural plankton communities on scales varying from days to years. The seasonal dynamics in temperate lake plankton communities, with emphasis on both physical and biological forcing factors, were captured in the 1980s in a conceptual framework, the Plankton Ecology Group (PEG) model. 2.Taking the PEG model as our starting point, we discuss anticipated changes in seasonal and long-term plankton dynamics and extend this model to other climate regions, particularly polar and tropical latitudes. Based on our improved post-PEG understanding of plankton dynamics, we also evaluate the role of microbial plankton, parasites and fish in governing plankton dynamics and distribution. 3.In polar lakes, there is usually just a single peak in plankton biomass in summer. Lengthening of the growing season under warmer conditions may lead to higher and more prolonged phytoplankton productivity. Climate-induced increases in nutrient loading in these oligotrophic waters may contribute to higher phytoplankton biomass and subsequent higher zooplankton and fish productivity. 4.In temperate lakes, a seasonal pattern with two plankton biomass peaks in spring and summer can shift to one with a single but longer and larger biomass peak as nutrient loading increases, with associated higher populations of zooplanktivorous fish. Climate change will exacerbate these trends by increasing nutrient loading through increased internal nutrient inputs (due to warming) and increased catchment inputs (in the case of more precipitation). 5.In tropical systems, temporal variability in precipitation can be an important driver of the seasonal development of plankton. Increases in precipitation intensity may reset the seasonal dynamics of plankton communities and favour species adapted to highly variable environments. The existing intense predation by fish on larger zooplankters may increase further, resulting in a perennially low zooplankton biomass. 6.Bacteria were not included in the original PEG model. Seasonally, bacteria vary less than the phytoplankton but often follow its patterns, particularly in colder lakes. In warmer lakes, and with future warming, a greater influx of allochthonous carbon may obscure this pattern. 7.Our analyses indicate that the consequences of climate change for plankton dynamics are, to a large extent, system specific, depending on characteristics such as food-web structure and nutrient loading. Indirect effects through nutrient loading may be more important than direct effects of temperature increase, especially for phytoplankton. However, with warming a general picture emerges of increases in bacterivory, greater cyanobacterial dominance and smaller-bodied zooplankton that are more heavily impacted by fish predation.
  •  
5.
  • Harris, Ted D., et al. (författare)
  • What makes a cyanobacterial bloom disappear? : A review of the abiotic and biotic cyanobacterial bloom loss factors
  • 2024
  • Ingår i: Harmful Algae. - : Elsevier. - 1568-9883 .- 1878-1470. ; 133
  • Forskningsöversikt (refereegranskat)abstract
    • Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera -specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.
  •  
6.
  • Kramer, Lilith, et al. (författare)
  • New paths for modelling freshwater nature futures
  • 2023
  • Ingår i: Sustainability Science. - 1862-4065 .- 1862-4057.
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater ecosystems are exceptionally rich in biodiversity and provide essential benefits to people. Yet they are disproportionately threatened compared to terrestrial and marine systems and remain underrepresented in the scenarios and models used for global environmental assessments. The Nature Futures Framework (NFF) has recently been proposed to advance the contribution of scenarios and models for environmental assessments. This framework places the diverse relationships between people and nature at its core, identifying three value perspectives as points of departure: Nature for Nature, Nature for Society, and Nature as Culture. We explore how the NFF may be implemented for improved assessment of freshwater ecosystems. First, we outline how the NFF and its main value perspectives can be translated to freshwater systems and explore what desirable freshwater futures would look like from each of the above perspectives. Second, we review scenario strategies and current models to examine how freshwater modelling can be linked to the NFF in terms of its aims and outcomes. In doing so, we also identify which aspects of the NFF framework are not yet captured in current freshwater models and suggest possible ways to bridge them. Our analysis provides future directions for a more holistic freshwater model and scenario development and demonstrates how society can benefit from freshwater modelling efforts that are integrated with the value-perspectives of the NFF.
  •  
7.
  •  
8.
  • Meyer, Michael F., et al. (författare)
  • Virtual Growing Pains : Initial Lessons Learned from Organizing Virtual Workshops, Summits, Conferences, and Networking Events during a Global Pandemic
  • 2021
  • Ingår i: Limnology and Oceanography Bulletin. - : John Wiley & Sons. - 1539-607X .- 1539-6088. ; 30:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • For many, 2020 was a year of abrupt professional and personal change. For the aquatic sciences community, many were adapting to virtual formats for conducting and sharing science, while simultaneously learning to live in a socially distanced world. Understandably, the aquatic sciences community postponed or canceled most in-person scientific meetings. Still, many scientific communities either transitioned annual meetings to a virtual format or inaugurated new virtual meetings. Fortunately, increased use of video conferencing platforms, networking and communication applications, and a general comfort with conducting science virtually helped bring the in-person meeting experience to scientists worldwide. Yet, the transition to conducting science virtually revealed new barriers to participation whereas others were lowered. The combined lessons learned from organizing a meeting constitute a necessary knowledge base that will prove useful, as virtual conferences are likely to continue in some form. To concentrate and synthesize these experiences, we showcase how six scientific societies and communities planned, organized, and conducted virtual meetings in 2020. With this consolidated information in hand, we look forward to a future, where scientific meetings embrace a virtual component, so to as help make science more inclusive and global.
  •  
9.
  • Reinl, Kaitlin L., et al. (författare)
  • Cyanobacterial blooms in oligotrophic lakes : Shifting the high-nutrient paradigm
  • 2021
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 66:9, s. 1846-1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater cyanobacterial blooms have become ubiquitous, posing major threats to ecological and public health. Decades of research have focused on understanding drivers of these blooms with a primary focus on eutrophic systems; however, cyanobacterial blooms also occur in oligotrophic systems, but have received far less attention, resulting in a gap in our understanding of cyanobacterial blooms overall. In this review, we explore evidence of cyanobacterial blooms in oligotrophic freshwater systems and provide explanations for those occurrences. We show that through their unique physiological adaptations, cyanobacteria are able to thrive under a wide range of environmental conditions, including low-nutrient waterbodies. We contend that to fully understand cyanobacterial blooms, and thereby mitigate and manage them, we must expand our inquiries to consider systems along the trophic gradient, and not solely focus on eutrophic systems, thus shifting the high-nutrient paradigm to a trophic-gradient paradigm.
  •  
10.
  • Sommer, Ulrich, et al. (författare)
  • Beyond the Plankton Ecology Group (PEG) Model : Mechanisms Driving Plankton Succession
  • 2012
  • Ingår i: Annual Review of Ecology, Evolution and Systematics. - : Annual Reviews. - 1543-592X .- 1545-2069. ; 43, s. 429-448
  • Forskningsöversikt (refereegranskat)abstract
    • The seasonal succession of plankton is an annually repeated process of community assembly during which all major external factors and internal interactions shaping communities can be studied. A quarter of a century ago, the state of this understanding was described by the verbal plankton ecology group (PEG) model. It emphasized the role of physical factors, grazing and nutrient limitation for phytoplankton, and the role of food limitation and fish predation for zooplankton. Although originally targeted at lake ecosystems, it was also adopted by marine plankton ecologists. Since then, a suite of ecological interactions previously underestimated in importance have become research foci: overwintering of key organisms, the microbial food web, parasitism, and food quality as a limiting factor and an extended role of higher order predators. A review of the impact of these novel interactions on plankton seasonal succession reveals limited effects on gross seasonal biomass patterns, but strong effects on species replacements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy