SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dopazo Joaquin) "

Sökning: WFRF:(Dopazo Joaquin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kruczyk, Marcin (författare)
  • Rule-Based Approaches for Large Biological Datasets Analysis : A Suite of Tools and Methods
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is about new and improved computational methods to analyze complex biological data produced by advanced biotechnologies. Such data is not only very large but it also is characterized by very high numbers of features. Addressing these needs, we developed a set of methods and tools that are suitable to analyze large sets of data, including next generation sequencing data, and built transparent models that may be interpreted by researchers not necessarily expert in computing. We focused on brain related diseases.The first aim of the thesis was to employ the meta-server approach to finding peaks in ChIP-seq data. Taking existing peak finders we created an algorithm that produces consensus results better than any single peak finder.The second aim was to use supervised machine learning to identify features that are significant in predictive diagnosis of Alzheimer disease in patients with mild cognitive impairment. This experience led to a development of a better feature selection method for rough sets, a machine learning method. The third aim was to deepen the understanding of the role that STAT3 transcription factor plays in gliomas. Interestingly, we found that STAT3 in addition to being an activator is also a repressor in certain glioma rat and human models. This was achieved by analyzing STAT3 binding sites in combination with epigenetic marks. STAT3 regulation was determined using expression data of untreated cells and cells after JAK2/STAT3 inhibition.The four papers constituting the thesis are preceded by an exposition of the biological, biotechnological and computational background that provides foundations for the papers.The overall results of this thesis are witness of the mutually beneficial relationship played by Bioinformatics in modern Life Sciences and Computer Science.
  •  
2.
  • Ostaszewski, Marek, et al. (författare)
  • COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
  • 2021
  • Ingår i: Molecular Systems Biology. - : John Wiley & Sons. - 1744-4292 .- 1744-4292. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
  •  
3.
  • Prieur, Xavier, et al. (författare)
  • Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:3, s. 797-809
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Obesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the current study we investigated the concept of lipid-induced toxicity as the pathogenic link that could explain the trigger of this response.RESEARCH DESIGN AND METHODS: We addressed this question using isolated ATMs and adipocytes from genetic and diet-induced murine models of obesity. Through transcriptomic and lipidomic analysis, we created a model integrating transcript and lipid species networks simultaneously occurring in adipocytes and ATMs and their reversibility by thiazolidinedione treatment.RESULTS: We show that polarization of ATMs is associated with lipid accumulation and the consequent formation of foam cell-like cells in adipose tissue. Our study reveals that early stages of adipose tissue expansion are characterized by M2-polarized ATMs and that progressive lipid accumulation within ATMs heralds the M1 polarization, a macrophage phenotype associated with severe obesity and insulin resistance. Furthermore, rosiglitazone treatment, which promotes redistribution of lipids toward adipocytes and extends the M2 ATM polarization state, prevents the lipid alterations associated with M1 ATM polarization.CONCLUSIONS: Our data indicate that the M1 ATM polarization in obesity might be a macrophage-specific manifestation of a more general lipotoxic pathogenic mechanism. This indicates that strategies to optimize fat deposition and repartitioning toward adipocytes might improve insulin sensitivity by preventing ATM lipotoxicity and M1 polarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy