SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dorfman R) "

Sökning: WFRF:(Dorfman R)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Jimmy Z, et al. (författare)
  • Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis.
  • 2013
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:6, s. 670-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci showed significantly stronger association with PSC than with IBD, suggesting overlapping yet distinct genetic architectures for these two diseases. We incorporated association statistics from 7 diseases clinically occurring with PSC in the analysis and found suggestive evidence for 33 additional pleiotropic PSC risk loci. Together with network analyses, these findings add to the genetic risk map of PSC and expand on the relationship between PSC and other immune-mediated diseases.
  •  
2.
  • Tallini, G, et al. (författare)
  • Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours. A report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group
  • 2002
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417. ; 196:2, s. 194-203
  • Tidskriftsartikel (refereegranskat)abstract
    • The evaluation of chondroid lesions requires full integration of clinical, radiographic, and pathological data; tumour typing is often a challenge for the diagnostic pathologist. Although a variety of chromosomal abnormalities have been documented in chondroid lesions, the potential usefulness of cytogenetic analysis remains unclear. This study has critically reviewed and analysed 117 karyotyped samples from 100 patients with cartilaginous and chordoid tumours. Cases were selected based on successful chromosomal analysis and adequacy of clinical, radiographic, and pathological information. To ensure objective evaluation, the cytogenetic results were correlated in a double-blind setting with consensus diagnoses independently determined on each case, after complete review of the histological, radiographic, and clinical findings. Karyotypic aberrations were identified in 41/92 cartilaginous tumours (5/11 osteochondromas, 2/3 chondromyxoid fibromas, 0/4 chondroblastomas, 11/29 chondromas, 0/3 chondroid tumours of undetermined malignant potential, 22/40 chondrosarcomas and 1/2 miscellaneous cartilaginous lesions) and 5/8 chordomas. Complex karyotypic changes were a feature of malignant tumours (chondrosarcoma and chordoma) and of chondrosarcoma among cartilaginous tumours, where they correlated with high tumour grade. Among primary well-differentiated cartilaginous lesions of bone, the finding of an abnormal karyotype was consistently associated with a grade 1 chondrosarcoma diagnosis. Among karyotypically abnormal cartilaginous tumours, loss of distal 8q was associated with osteochondroma, +5 with synovial chondroma/chondromatosis and parosteal or soft tissue chondroma, alterations of chromosome arm 6q with chondromyxoid fibroma, +7 with bone chondrosarcoma, and 17pl alterations with grade 3 chondrosarcoma. Alterations involving 12q13 characterized synovial chondroma/chondromatosis in the chondroma group and myxoid chondrosarcoma of bone in the chondrosarcoma group. In conclusion, cytogenetic abnormalities in chondroid lesions are common and are not randomly distributed. They are associated with malignancy/tumour grade as well as with specific diagnoses in many cases, and can therefore be of potential value for tumour typing.
  •  
3.
  •  
4.
  • Nissenbaum, J, et al. (författare)
  • Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2
  • 2010
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 20:9, s. 1180-1190
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic neuropathic pain is affected by specifics of the precipitating neural pathology, psychosocial factors, and by genetic predisposition. Little is known about the identity of predisposing genes. Using an integrative approach, we discovered that CACNG2 significantly affects susceptibility to chronic pain following nerve injury. CACNG2 encodes for stargazin, a protein intimately involved in the trafficking of glutamatergic AMPA receptors. The protein might also be a Ca2+ channel subunit. CACNG2 has previously been implicated in epilepsy. Initially, using two fine-mapping strategies in a mouse model (recombinant progeny testing [RPT] and recombinant inbred segregation test [RIST]), we mapped a pain-related quantitative trait locus (QTL) (Pain1) into a 4.2-Mb interval on chromosome 15. This interval includes 155 genes. Subsequently, bioinformatics and whole-genome microarray expression analysis were used to narrow the list of candidates and ultimately to pinpoint Cacng2 as a likely candidate. Analysis of stargazer mice, a Cacng2 hypomorphic mutant, provided electrophysiological and behavioral evidence for the gene's functional role in pain processing. Finally, we showed that human CACNG2 polymorphisms are associated with chronic pain in a cohort of cancer patients who underwent breast surgery. Our findings provide novel information on the genetic basis of neuropathic pain and new insights into pain physiology that may ultimately enable better treatments.
  •  
5.
  •  
6.
  • Zeisberg, Elisabeth M., et al. (författare)
  • Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
  • 2007
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 13:8, s. 952-961
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-beta 1 (TGF-beta 1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.
  •  
7.
  • Ödman, D., et al. (författare)
  • Distribution of label spacings for genome mapping in nanochannels
  • 2018
  • Ingår i: Biomicrofluidics. - : AIP Publishing. - 1932-1058. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In genome mapping experiments, long DNA molecules are stretched by confining them to very narrow channels, so that the locations of sequence-specific fluorescent labels along the channel axis provide large-scale genomic information. It is difficult, however, to make the channels narrow enough so that the DNA molecule is fully stretched. In practice, its conformations may form hairpins that change the spacings between internal segments of the DNA molecule, and thus the label locations along the channel axis. Here, we describe a theory for the distribution of label spacings that explains the heavy tails observed in distributions of label spacings in genome mapping experiments. Published by AIP Publishing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy