SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dorrepaal Ellen) ;pers:(Becher Marina)"

Sökning: WFRF:(Dorrepaal Ellen) > Becher Marina

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krab, Eveline J., et al. (författare)
  • Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions
  • 2018
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 106:2, s. 599-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species-specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. We investigated the effects of winter warming and altered spring climate on growing-season performance of three common and widespread shrub species in cryoturbated non-sorted circle arctic tundra. By insulating sparsely vegetated non-sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. Winter warming affected shrub performance, but the direction and magnitude were species-specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green-up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis-idaea by c. 50%, while decreasing Betula nana growth (p < .1). All of these effects were consistent the mostly barren circles and surrounding heath. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis-idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far-reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
  •  
2.
  • Pascual, Didac, et al. (författare)
  • The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study
  • 2021
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 50:2, s. 375-392
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy