SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Du Jinyang) "

Sökning: WFRF:(Du Jinyang)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dou, Yujie, et al. (författare)
  • Reliability of using vegetation optical depth for estimating decadal and interannual carbon dynamics
  • 2023
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 285
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation optical depth (VOD) from satellite passive microwave sensors has enabled monitoring of aboveground biomass carbon dynamics by building a relationship with static carbon maps over space and then applying this relationship to VOD time series. However, uncertainty in this relationship arises from changes in water stress, as VOD is mainly determined by vegetation water content, which varies at diurnal to interannual scales, and depends on changes in both biomass and relative moisture content. Here, we studied the reliability of using VOD from various microwave frequencies and temporal aggregation methods for estimating decadal biomass carbon dynamics at the global scale. We used the VOD diurnal variations to represent the magnitude of vegetation water content buffering caused by climatic variations for a constant amount of dry biomass carbon. This magnitude of VOD diurnal variations was then used to evaluate the likelihood of VOD decadal variations in reflecting decadal dry biomass carbon changes. We found that SMOS-IC L-VOD and LPDR X-VOD can be reliably used to estimate decadal carbon dynamics for 76.7% and 69.9% of the global vegetated land surface, respectively, yet cautious use is warranted for some areas such as the eastern Amazon rainforest. Moreover, the annual VOD aggregated from the 95% percentile of the nighttime VOD retrievals was proved to be the most suitable parameter for estimating decadal biomass carbon dynamics among the temporal aggregation methods. Finally, we validated the use of annual VOD for estimating interannual carbon dynamics by comparing VOD changes between adjacent years against eddy covariance estimations of gross primary production from flux sites over several land cover classes across the globe. Despite the large difference in spatial scales between them, the positive correlation obtained supports the capability of satellite VOD in quantifying interannual carbon dynamics.
  •  
2.
  • Johnson, Matthew S., et al. (författare)
  • Methane Emission From Global Lakes : New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions
  • 2022
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 127:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes have been highlighted as one of the largest natural sources of the greenhouse gas methane (CH4) to the atmosphere. However, global estimates of lake CH4 fluxes over the last 20 years exhibit widely different results ranging from 6 to 185 Tg CH4 yr(-1), which is to a large extent driven by differences in lake areas and thaw season lengths used. This has generated uncertainty regarding both lake fluxes and the global CH4 budget. This study constrains global lake water CH4 emissions by using new information on lake area and distribution and CH4 fluxes distinguished by major emission pathways; ecoclimatic lake type; satellite-derived ice-free emission period length; and diel- and temperature-related seasonal flux corrections. We produced gridded data sets at 0.25 degrees latitude x 0.25 degrees longitude spatial resolution, representing daily emission estimates over a full annual climatological cycle, appropriate for use in global CH4 budget estimates, climate and Earth System Models, bottom-up biogeochemical models, and top-down inverse model simulations. Global lake CH4 fluxes are 41.6 +/- 18.3 Tg CH4 yr(-1) with approximately 50% of the flux contributed by tropical/subtropical lakes. Strong temperature-dependent flux seasonality and satellite-derived freeze/thaw dynamics limit emissions at high latitudes. The primary emission pathway for global annual lake fluxes is ebullition (23.4 Tg) followed by diffusion (14.1 Tg), ice-out and spring water-column turnover (3.1 Tg), and fall water-column turnover (1.0 Tg). These results represent a major contribution to reconciling differences between bottom-up and top-town estimates of inland aquatic system emissions in the global CH4 budget.
  •  
3.
  • Johnson, Matthew S., et al. (författare)
  • Spatiotemporal Methane Emission From Global Reservoirs
  • 2021
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : AMER GEOPHYSICAL UNION. - 2169-8953 .- 2169-8961. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Inland aquatic systems, such as reservoirs, contribute substantially to global methane (CH4) emissions; yet are among the most uncertain components of the total CH4 budget. Reservoirs have received recent attention as they may generate high CH4 fluxes. Improved quantification of these CH4 fluxes, particularly their spatiotemporal distribution, is key to realistically incorporating them in CH4 modeling and budget studies. Here we report on a new global, gridded (0.25 degrees lat x 0.25 degrees lon) study of reservoir CH4 emissions, accounting for new knowledge regarding reservoir areal extent and distribution, and spatiotemporal emission patterns influenced by diurnal variability, temperature-dependent seasonality, satellite-derived freeze-thaw dynamics, and eco-climatic zone. The results of this new data set comprise daily CH4 emissions throughout the full annual cycle and show that reservoirs cover 297 x 10(3) km(2) globally and emit 10.1 Tg CH4 yr(-1) (1 sigma uncertainty range of 7.2-12.9 Tg CH4 yr(-1)) from diffusive (1.2 Tg CH4 yr(-1)) and ebullitive (8.9 Tg CH4 yr(-1)) emission pathways. This analysis of reservoir CH4 emission addresses multiple gaps and uncertainties in previous studies and represents an important contribution to studies of the global CH4 budget. The new data sets and methodologies from this study provide a framework to better understand and model the current and future role of reservoirs in the global CH4 budget and to guide efforts to mitigate reservoir-related CH4 emissions.
  •  
4.
  • Watts, Jennifer D., et al. (författare)
  • Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget
  • 2023
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 29:7, s. 1870-1889
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy