SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dubrovinsky Leonid) ;lar1:(liu);pers:(Abrikosov Igor)"

Sökning: WFRF:(Dubrovinsky Leonid) > Linköpings universitet > Abrikosov Igor

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aslandukov, Andrey, et al. (författare)
  • Anionic N18 Macrocycles and a Polynitrogen Double Helix in Novel Yttrium Polynitrides YN6 and Y2N11 at 100 GPa
  • 2022
  • Ingår i: Angewandte Chemie International Edition. - Weinheim, Germany : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 61:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel yttrium nitrides, YN6 and Y2N11, were synthesized by direct reaction between yttrium and nitrogen at 100 GPa and 3000 K in a laser-heated diamond anvil cell. High-pressure synchrotron single-crystal X-ray diffraction revealed that the crystal structures of YN6 and Y2N11 feature a unique organization of nitrogen atoms-a previously unknown anionic N-18 macrocycle and a polynitrogen double helix, respectively. Density functional theory calculations, confirming the dynamical stability of the YN6 and Y2N11 compounds, show an anion-driven metallicity, explaining the unusual bond orders in the polynitrogen units. As the charge state of the polynitrogen double helix in Y2N11 is different from that previously found in Hf2N11 and because N-18 macrocycles have never been predicted or observed, their discovery significantly extends the chemistry of polynitrides.
  •  
2.
  • Aslandukov, Andrey, et al. (författare)
  • Synthesis of LaCN3, TbCN3, CeCN5, and TbCN5 Polycarbonitrides at Megabar Pressures
  • 2024
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 146:26, s. 18161-18171
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN](-) and [CN2](2-) anions, as well as the high-pressure formed guanidinates featuring [CN3](5-) anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.
  •  
3.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of a Nitrogen-Rich Inclusion Compound ReN8·xN2 with Conjugated Polymeric Nitrogen Chains
  • 2018
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 57:29, s. 9048-9053
  • Tidskriftsartikel (refereegranskat)abstract
    • A nitrogen-rich compound, ReN(8)xN(2), was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser-heated diamond anvil cell. Single-crystal X-ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular-shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100GPa, ReN(8)xN(2) is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [-N=N-] that constitute the framework have not been previously observed in any compound. Abinitio calculations on ReN(8)xN(2) provide strong support for the experimental results and conclusions.
  •  
4.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN4 Polymorph
  • 2021
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 126:17
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN4. A triclinic phase of beryllium tetranitride tr-BeN4 was synthesized from elements at similar to 85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN4 layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated pi systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN4 layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN4 layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
  •  
5.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of Metal-Inorganic Frameworks Hf4N20 center dot N-2, WN8 center dot N-2, and Os5N28 center dot 3 N-2 with Polymeric Nitrogen Linkers
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 59:26, s. 10321-10326
  • Tidskriftsartikel (refereegranskat)abstract
    • Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal-inorganic frameworks Hf4N20 center dot N2, WN 8 center dot N2, and Os5N28 center dot 3N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN 8, and Os5N28) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2N11 that features double-helix catenapoly[tetraz-1-ene-1,4-diyl] nitrogen chains [-N-N-N=N-](infinity.)
  •  
6.
  • Bykov, Maxim, et al. (författare)
  • High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re-2(N-2)(N)(2) stable at ambient conditions
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure synthesis in diamond anvil cells can yield unique compounds with advanced properties, but often they are either unrecoverable at ambient conditions or produced in quantity insufficient for properties characterization. Here we report the synthesis of metallic, ultraincompressible (K-0 = 428(10) GPa), and very hard (nanoindentation hardness 36.7(8) GPa) rhenium nitride pernitride Re-2(N-2)(N)(2). Unlike known transition metals pernitrides Re-2(N-2)(N)(2) contains both pernitride N-2(4-) and discrete N3- anions, which explains its exceptional properties. Re-2(N-2)(N)(2) can be obtained via a reaction between rhenium and nitrogen in a diamond anvil cell at pressures from 40 to 90 GPa and is recoverable at ambient conditions. We develop a route to scale up its synthesis through a reaction between rhenium and ammonium azide, NH4N3, in a large-volume press at 33 GPa. Although metallic bonding is typically seen incompatible with intrinsic hardness, Re-2(N-2)(N)(2) turned to be at a threshold for superhard materials.
  •  
7.
  • Bykov, Maxim, et al. (författare)
  • Stabilization of Polynitrogen Anions in Tantalum-Nitrogen Compounds at High Pressure
  • 2021
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 60:16, s. 9003-9008
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of polynitrogen compounds is of great importance due to their potential as high-energy-density materials (HEDM), but because of the intrinsic instability of these compounds, their synthesis and stabilization is a fundamental challenge. Polymeric nitrogen units which may be stabilized in compounds with metals at high pressure are now restricted to non-branched chains with an average N-N bond order of 1.25, limiting their HEDM performances. Herein, we demonstrate the synthesis of a novel polynitrogen compound TaN5 via a direct reaction between tantalum and nitrogen in a diamond anvil cell at circa 100 GPa. TaN5 is the first example of a material containing branched all-single-bonded nitrogen chains [N-5(5-)](infinity). Apart from that we discover two novel Ta-N compounds: TaN4 with finite N-4(4-) chains and the incommensurately modulated compound TaN2-x, which is recoverable at ambient conditions.
  •  
8.
  • Bykova, Elena, et al. (författare)
  • Novel Class of Rhenium Borides Based on Hexagonal Boron Networks Interconnected by Short B-2 Dumbbells
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:18, s. 8138-8152
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (similar to 1.7 angstrom) axially oriented B-2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H-V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReBx compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.
  •  
9.
  • Dubrovinsky, Leonid, et al. (författare)
  • Materials synthesis at terapascal static pressures
  • 2022
  • Ingår i: Nature. - London, United Kingdom : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 605:7909, s. 274-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions(1,2). Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell(3), producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.
  •  
10.
  • Greenberg, Eran, et al. (författare)
  • Pressure-Induced Site-Selective Mott Insulator-Metal Transition in Fe2O3
  • 2018
  • Ingår i: Physical Review X. - : AMER PHYSICAL SOC. - 2160-3308. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide experimental and theoretical evidence for a pressure-induced Mott insulator-metal transition in Fe2O3 characterized by site-selective delocalization of the electrons. Density functional plus dynamical mean field theory (DFT + DMFT) calculations, along with Mossbauer spectroscopy, x-ray diffraction, and electrical transport measurements on Fe2O3 up to 100 GPa, reveal this site-selective Mott transition between 50 and 68 GPa, such that the metallization can be described by ((FE3+HS)-F-VI)(2)O-3 [R (3) over barc structure]-amp;gt;(50) (GPa) (Fe-VIII(3+HS) Fe-VI(M))O-3 [P2(1)/n structure]-amp;gt;(68 Gpa)(Fe-VI(M))(2)O-3[Aba2/PPv structure]. Within the P2(1)/n crystal structure, characterized by two distinct coordination sites (VI and VIII), we observe equal abundances of ferric ions (Fe3+) and ions having delocalized electrons (Fe-M), and only at higher pressures is a fully metallic high-pressure structure obtained, all at room temperature. Thereby, the transition is characterized by delocalization/metallization of the 3d electrons on half the Fe sites, with a site-dependent collapse of local moments. Above approximately 50 GPa, Fe2O3 is a strongly correlated metal with reduced electron mobility (large band renormalizations) of m*/m similar to 4 and 6 near the Fermi level. Importantly, upon decompression, we observe a site-selective (metallic) to conventional Mott insulator phase transition (Fe-VIII(3+HS) Fe-VI(M))O-3 -amp;gt;(50) (GPa)(Fe-VIII(3+HS) Fe-VI(3+HS))O-3 within the same P2(1)/n structure, indicating a decoupling of the electronic and lattice degrees of freedom. Our results offer a model for understanding insulator-metal transitions in correlated electron materials, showing that the interplay of electronic correlations and crystal structure may result in rather complex behavior of the electronic and magnetic states of such compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (28)
annan publikation (1)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Dubrovinsky, Leonid (29)
Fedotenko, Timofey (15)
Laniel, Dominique (12)
Bykov, Maxim (12)
Dubrovinskaia, Natal ... (11)
visa fler...
Chariton, Stella (11)
Khandarkhaeva, Saian ... (10)
Ponomareva, Alena V. (9)
Aslandukov, Andrey (9)
Hanfland, Michael (9)
Abrikosov, Igor A., ... (9)
Yin, Yuqing (7)
Trybel, Florian, Dr. ... (7)
Glazyrin, Konstantin (7)
Prakapenka, Vitali (7)
Aslandukova, Alena (6)
Bykova, Elena (6)
Giacobbe, Carlotta (6)
Bright, Eleanor Lawr ... (5)
Doubrovinckaia, Nata ... (5)
Aprilis, Georgios (5)
Doubrovinckaia, Nata ... (5)
Tasnadi, Ferenc, 197 ... (5)
Prakapenka, Vitali B ... (5)
Simak, Sergey (4)
Tasnádi, Ferenc (4)
Goncharov, Alexander ... (4)
Ekholm, Marcus (3)
Trybel, Florian (3)
Katsnelson, Mikhail, ... (3)
Liermann, Hanns Pete ... (3)
Winkler, Bjoern (3)
Masood, Talha Bin (2)
Abrikosov, Igor A. (2)
Akbar, Fariia Iasmin (2)
Wright, Jonathan (2)
Rüffer, R (2)
Pakhomova, Anna (2)
van Smaalen, Sander (2)
Lawrence Bright, Ele ... (2)
Akbar, Fariia I. (2)
Ranieri, Umbertoluca (2)
Spender, James (2)
Garbarino, Gaston (2)
Jönsson, Johan (2)
Smith, Jesse S. (2)
Mahmood, Mohammad F. (2)
Rudenko, Alexander N ... (2)
Sedmak, Pavel (2)
visa färre...
Lärosäte
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (24)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy