SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duffy Darragh) ;lar1:(ki)"

Sökning: WFRF:(Duffy Darragh) > Karolinska Institutet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chan, Yi-Hao, et al. (författare)
  • SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency.
  • 2024
  • Ingår i: The Journal of experimental medicine. - 1540-9538. ; 221:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited deficiency of the RNA lariat-debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular basis of disease and the range of viral predisposition are unclear. We report inherited DBR1 deficiency in a 14-year-old boy who suffered from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)-derived hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain neuron-intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.
  •  
2.
  • Consiglio, Camila, et al. (författare)
  • Immune system adaptation during gender-affirming testosterone treatment
  • 2023
  • Ingår i: Journal of Reproductive Immunology. - : Elsevier. - 0165-0378 .- 1872-7603. ; 159, s. 29-30
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Biological sex impacts human immune responses, modulating susceptibility and severity to immune-related diseases. Female generally mount more robust immune responses than males, resulting in lower infection severity and greater autoimmunity incidence. Here, we addressed the contribution of testosterone to human immune function by analyzing a cohort of subjects undergoing gender-affirming testosterone treatment. We performed systems-level immunomonitoring through mass cytometry, scRNA and scA-TAC-Sequencing, and proteome profiling of blood samples at baseline and following 3 and 12 months of treatment. Testosterone treatment was associated with a low-grade inflammatory profile, evidenced by upregulation of proinflammatory plasma proteome (e.g., EN-RAGE, OSM, TNF), and induction of an inflammatory transcriptional program associated with NFkB signaling, and TNF signaling. Following testosterone treatment, higher NFkB activity was revealed in CD4 T, CD8 T, and NK cells in scATACseq analyses. Further, testosterone increased monocytic inflammatory responses upon bacterial stimulation in vitro. Although testosterone was associated with this inflammatory profile, it also exerted negative effects on antiviral immunity. Firstly, the percentage of plasmacytoid dendritic cells (pDC) decreased over transition, with pDC also displaying phenotypic changes associated with lower IFN responses. Secondly, bulk transcriptomics analyses show an overall reduction of IFNa responses. Thirdly, testosterone treatment led to reduced IFNa production upon PBMCs stimulation with a viral agonist. Our results show that testosterone has broad effects on the human immune system, and significantly modulates important players in antiviral immunity and inflammatory response. Identifying pathways involved in immune sexual dimorphism will help define novel targets for effective prevention and treatment of immune-mediated diseases.
  •  
3.
  • Manry, Jérémy, et al. (författare)
  • The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies.
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy