SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duncan Emma L.) ;pers:(Duncan Emma L.)"

Sökning: WFRF:(Duncan Emma L.) > Duncan Emma L.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
2.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
3.
  • Moayyeri, Alireza, et al. (författare)
  • Genetic determinants of heel bone properties : genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:11, s. 3054-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 x 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 x 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 x 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
  •  
4.
  • Pettersson-Kymmer, Ulrika, et al. (författare)
  • HLA and KIR Associations of Cervical Neoplasia
  • 2018
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 218:12, s. 2006-2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cervical cancer is the fourth most common cancer in women, and we recently reported human leukocyte antigen (HLA) alleles showing strong associations with cervical neoplasia risk and protection. HLA ligands are recognised by killer immunoglobulin-like receptors (KIRs) expressed on a range of immune cell subsets, governing their proinflammatory activity. We hypothesized that the inheritance of particular HLA-KIR combinations would increase cervical neoplasia risk.Methods: Here, we used HLA and KIR dosages imputed from SNP genotype data from 2,143 cervical neoplasia cases and 13,858 healthy controls of European decent.Results: Four novel HLA alleles were identified in association with cervical neoplasia: HLA-DRB3*9901 (OR=1.24, P=2.49×10-9), HLA-DRB5*0101 (OR=1.29, P=2.26×10-8), HLA-DRB5*9901 (OR=0.77, P=1.90×10-9) and HLA-DRB3*0301 (OR=0.63, P=4.06×10-5), due to their linkage disequilibrium with known cervical neoplasia-associated HLA-DRB1 alleles. We also found homozygosity of HLA-C1 group alleles is a protective factor for HPV16-related cervical neoplasia (C1/C1, OR=0.79, P=0.005). This protective association was restricted to carriers of either KIR2DL2 (OR=0.67, P=0.00045) or KIR2DS2 (OR=0.69, P=0.0006).Conclusions: Our findings suggest that HLA-C1 group alleles play a role in protecting against HPV16-related cervical neoplasia, mainly through a KIR-mediated mechanism.
  •  
5.
  • Freidin, Maxim B., et al. (författare)
  • Long-COVID fatigue is not predicted by pre-pandemic plasma IL-6 levels in mild COVID-19
  • 2023
  • Ingår i: Inflammation Research. - 1023-3830. ; 72:5, s. 947-953
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective and design: Fatigue is a prominent symptom in the general population and may follow viral infection, including SARS-CoV2 infection which causes COVID-19. Chronic fatigue lasting more than three months is the major symptom of the post-COVID syndrome (known colloquially as long-COVID). The mechanisms underlying long-COVID fatigue are unknown. We hypothesized that the development of long-COVID chronic fatigue is driven by the pro-inflammatory immune status of an individual prior to COVID-19. Subjects and methods: We analyzed pre-pandemic plasma levels of IL-6, which plays a key role in persistent fatigue, in N = 1274 community dwelling adults from TwinsUK. Subsequent COVID-19-positive and -negative participants were categorized based on SARS-CoV-2 antigen and antibody testing. Chronic fatigue was assessed using the Chalder Fatigue Scale. Results: COVID-19-positive participants exhibited mild disease. Chronic fatigue was a prevalent symptom among this population and significantly higher in positive vs. negative participants (17% vs 11%, respectively; p = 0.001). The qualitative nature of chronic fatigue as determined by individual questionnaire responses was similar in positive and negative participants. Pre-pandemic plasma IL-6 levels were positively associated with chronic fatigue in negative, but not positive individuals. Raised BMI was associated with chronic fatigue in positive participants. Conclusions: Pre-existing increased IL-6 levels may contribute to chronic fatigue symptoms, but there was no increased risk in individuals with mild COVID-19 compared with uninfected individuals. Elevated BMI also increased the risk of chronic fatigue in mild COVID-19, consistent with previous reports.
  •  
6.
  • Sudre, Carole H., et al. (författare)
  • Attributes and predictors of long COVID
  • 2021
  • Ingår i: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 27:4, s. 626-631
  • Tidskriftsartikel (refereegranskat)abstract
    • Reports of long-lasting coronavirus disease 2019 (COVID-19) symptoms, the so-called ‘long COVID’, are rising but little is known about prevalence, risk factors or whether it is possible to predict a protracted course early in the disease. We ana- lyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app1. A total of 558 (13.3%) partici- pants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks. Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex. Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76–4.50)). A simple model to distinguish between short COVID and long COVID at 7 days (total sample size, n = 2,149) showed an area under the curve of the receiver operating characteristic curve of 76%, with replication in an independent sample of 2,472 individuals who were positive for severe acute respiratory syndrome coronavi- rus 2. This model could be used to identify individuals at risk of long COVID for trials of prevention or treatment and to plan education and rehabilitation services. 
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy