SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dunlop Malcolm G.) "

Sökning: WFRF:(Dunlop Malcolm G.)

  • Resultat 1-10 av 11
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koettgen, Anna, et al. (författare)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
  •  
2.
  • Law, Philip J., et al. (författare)
  • Association analyses identify 31 new risk loci for colorectal cancer susceptibility
  • 2019
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.
3.
  • Freitag, Daniel F., et al. (författare)
  • Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis
  • 2015
  • Ingår i: The Lancet Diabetes & Endocrinology. - Elsevier. - 2213-8595. ; 3:4, s. 243-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1 alpha and IL-1 beta); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p=9.3 x 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1,7%; p=3.5 x 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p=7.7 x 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p=1.8 x 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p=3.9 x 10(-10)). Perallele odds ratios were 0.97 (0.95-0.99; p=9.9 x 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p=0.47) for type 2 diabetes, 1.00 (0.98-1.02; p=0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p=1.8 x 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1 alpha/beta inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Copyright (C) The Interleukin 1 Genetics Consortium. Open Access article distributed under the terms of CC-BY-NC-ND.
4.
  • Huffman, Jennifer E., et al. (författare)
  • Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans
  • 2015
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, P-inter= 2.6 x 10(-8)). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10(-8)), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10(-8)), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10(-4)). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
5.
  • Johansson, Åsa, et al. (författare)
  • Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis
  • 2009
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 18:2, s. 373-380
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes for height has gained interest for decades, but only recently have candidate genes started to be identified. We have performed linkage analysis and genome-wide association for height in approximately 4,000 individuals from five European populations. A total of 5 chromosomal regions showed suggestive linkage and in one of these regions, two SNPs (rs849140 and rs1635852) were associated with height (nominal p=7.0 x 10(-8) and p=9.6 x 10(-7) respectively). In total, five SNPs across the genome showed an association with height that reached the threshold of genome-wide significance (nominal p<1.6 x 10(-7)). The association with height was replicated for two SNPs (rs1635852 and rs849140) using three independent studies (N=31,077, N=1,268 and N=5,746) with overall meta p-values of 9.4x10(-10) and 5.3x10(-8). These SNPs are located in the JAZF1 gene, which has recently been associated with type II diabetes, prostate and endometrial cancer. JAZF1 is a transcriptional repressor of NR2C2, which results in low IGF1 serum concentrations, perinatal and early postnatal hypoglycaemia and growth retardation when knocked-out in mice. Both the linkage and association analyses independently identified the JAZF1 region affecting human height. We have demonstrated, through replication in additional independent populations, the consistency of the effect of the JAZF1 SNPs on height. Since this gene also has a key function in the metabolism of growth, JAZF1 represents one of the strongest candidates influencing human height so far identified.
  •  
6.
  • McQuillan, Ruth, et al. (författare)
  • Evidence of Inbreeding Depression on Human Height
  • 2012
  • Ingår i: PLOS Genetics. - 1553-7404. ; 8:7, s. e1002655
  • Tidskriftsartikel (refereegranskat)abstract
    • Stature is a classical and highly heritable complex trait, with 80%–90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS) have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ2 = 83.89, df = 1; p = 5.2×10−20). There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT), paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.
7.
  • Dunlop, Malcolm, et al. (författare)
  • Cumulative impact of 10 common genetic variants on colorectal cancer risk in 42,333 individuals from eight populations
  • 2012
  • Ingår i: Gut. - Stockholm : Karolinska Institutet, Dept of Molecular Medicine and Surgery. - 1468-3288. ; 81 (Epub 2012 Apr 5.)
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • OBJECTIVE: Colorectal cancer (CRC) has a substantial heritable component. Common genetic variation has been shown to contribute to CRC risk. A study was conducted in a large multi-population study to assess the feasibility of CRC risk prediction using common genetic variant data combined with other risk factors. A risk prediction model was built and applied to the Scottish population using available data. DESIGN: Nine populations of European descent were studied to develop and validate CRC risk prediction models. Binary logistic regression was used to assess the combined effect of age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only modestly influence CRC risk. Risk models were generated from case-control data incorporating genotypes alone (n=39 266) and in combination with gender, age and FH (n=11 324). Model discriminatory performance was assessed using 10-fold internal cross-validation and externally using 4187 independent samples. The 10-year absolute risk was estimated by modelling genotype and FH with age- and gender-specific population risks. RESULTS: The median number of risk alleles was greater in cases than controls (10 vs 9, p<2.2×10(-16)), confirmed in external validation sets (Sweden p=1.2×10(-6), Finland p=2×10(-5)). The mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05 to 1.13). Discriminative performance was poor across the risk spectrum (area under curve for genotypes alone 0.57; area under curve for genotype/age/gender/FH 0.59). However, modelling genotype data, FH, age and gender with Scottish population data shows the practicalities of identifying a subgroup with >5% predicted 10-year absolute risk. CONCLUSION: Genotype data provide additional information that complements age, gender and FH as risk factors, but individualised genetic risk prediction is not currently feasible. Nonetheless, the modelling exercise suggests public health potential since it is possible to stratify the population into CRC risk categories, thereby informing targeted prevention and surveillance.
8.
  • Ghazi, Sam, et al. (författare)
  • Colorectal cancer susceptibility loci in a population-based study : associations with morphological parameters
  • 2010
  • Ingår i: American Journal of Pathology. - 0002-9440 .- 1525-2191. ; 177:6, s. 2688-2693
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies have identified multiple genetic loci and single nucleotide polymorphisms (SNPs) associated with either increased or decreased risk of colorectal cancer (CRC). In the present study, our objective was to determine whether 11 of the new susceptibility CRC loci are associated with tumor morphology and to confirm these loci as distinct and etiologically different risk factors in the development of CRC. The following clinical and morphological parameters were analyzed in 1572 samples: tumor size, T-stage, lymph node metastases, degree of differentiation, mucin production, Crohn-like peritumoral lymphocytic infiltration, tumor-infiltrating lymphocytes, desmoplastic reaction, necrosis, invasion of blood or lymph vessels, perineural growth, medullary type, budding, and tumor margin. One SNP from each of the 11 loci (rs6983267 on 8q24.21, rs16892766 on 8q23.3, rs719725 on 9p24.1, rs10795668 on 10p14, rs3802842 on 11q23.1, rs4444235 on 14q22.2, rs4779584 on 15q13.3, rs9929218 on 16q22.1, rs4939827 on 18q21.1, rs10411210 on 19q13.11, and rs961253 on 20p12.3) was genotyped for all cases. Odds ratios, 95% confidence intervals, and the corresponding P values were calculated for the 11 SNPs identified above. A cross tabulation between SNPs and morphology was performed. Several loci showed statistically significant associations with specific phenotypes. The findings are consistent with pathogenic variants in several loci that act in distinct CRC and morphogenetic pathways. Further large-scale studies are required to validate these findings.
  •  
9.
  • Huhn, Stefanie, et al. (författare)
  • Coding variants in NOD-like receptors : An association study on risk and survival of colorectal cancer
  • 2018
  • Ingår i: PLoS ONE. - Public Library of Science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival.
10.
  • Thompson, Deborah J, et al. (författare)
  • Genetic predisposition to mosaic Y chromosome loss in blood
  • 2019
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 575, s. 652-657
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy