SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dupont Samuel 1971 ) ;pers:(Carey N.)"

Sökning: WFRF:(Dupont Samuel 1971 ) > Carey N.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carey, N, et al. (författare)
  • One size fits all: stability of metabolic scaling under warming and ocean acidification in echinoderms
  • 2014
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 161:9, s. 2131-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited ‘universal’ mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
  •  
2.
  • Carey, N., et al. (författare)
  • Sea Hare Aplysia punctata (Mollusca: Gastropoda) Can Maintain Shell Calcification under Extreme Ocean Acidification
  • 2016
  • Ingår i: Biological Bulletin. - : University of Chicago Press. - 0006-3185 .- 1939-8697. ; 231:2, s. 142-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean acidification is expected to cause energetic constraints upon marine calcifying organisms such as molluscs and echinoderms, because of the increased costs of building or maintaining shell material in lower pH. We examined metabolic rate, shell morphometry, and calcification in the sea hare Aplysia punctata under short-term exposure (19 days) to an extreme ocean acidification scenario (pH 7.3, similar to 2800 mu atm pCO(2)), along with a group held in control conditions (pH 8.1, similar to 344 mu atm pCO(2)). This gastropod and its congeners are broadly distributed and locally abundant grazers, and have an internal shell that protects the internal organs. Specimens were examined for metabolic rate via closed-chamber respirometry, followed by removal and examination of the shell under confocal microscopy. Staining using calcein determined the amount of new calcification that occurred over 6 days at the end of the acclimation period. The width of new, pre-calcified shell on the distal shell margin was also quantified as a proxy for overall shell growth. Aplysia punctata showed a 30% reduction in metabolic rate under low pH, but calcification was not affected. This species is apparently able to maintain calcification rate even under extreme low pH, and even when under the energetic constraints of lower metabolism. This finding adds to the evidence that calcification is a largely autonomous process of crystallization that occurs as long as suitable haeomocoel conditions are preserved. There was, however, evidence that the accretion of new, non-calcified shell material may have been reduced, which would lead to overall reduced shell growth under longer-term exposures to low pH independent of calcification. Our findings highlight that the chief impact of ocean acidification upon the ability of marine invertebrates to maintain their shell under low pH may be energetic constraints that hinder growth of supporting structure, rather than maintenance of calcification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Dupont, Samuel, 1971 (2)
Lundve, Bengt, 1957 (1)
Sigwart, J (1)
Sigwart, J. D. (1)
Lärosäte
Göteborgs universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy