SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dupont Samuel 1971 ) ;pers:(Huang X. Z.)"

Sökning: WFRF:(Dupont Samuel 1971 ) > Huang X. Z.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, X. Z., et al. (författare)
  • Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions
  • 2018
  • Ingår i: Aquatic Toxicology. - : Elsevier BV. - 0166-445X. ; 203, s. 61-68
  • Tidskriftsartikel (refereegranskat)abstract
    • With the development of industry and agriculture, the metal pollutants (e.g., Cu) are inevitably released into the aquatic environment. In addition, ocean acidification (OA) as a major environmental stress is affecting marine organisms. In this study, we investigated the hemocyte responses of the estuarine oyster Crassostrea rivularis exposed to six combinations of two pH levels (8.1 and 7.7) and three Cu concentrations (0, 10 and 50 mu g/l) using flow cytometry in vitro and in vivo. In both experiments, Cu and low pH jointly affected the hemocyte parameters of oyster. High Cu exposure resulted in decreased total hemocyte count (THC), esterase activity (EA) and lysosomal content (LC) and increased hemocyte mortality (HM), phagocytosis activity (PA) and reactive oxygen species (ROS) production, especially under low pH conditions. The immune suppression of metal-exposure was more significant than low pH exposure with a 28-d experimental period in oysters. A slight recovery of the immune parameters was observed in THC, HM, PA, ROS and LC. During the depuration period, the modulatory effects of pH were still obvious. In addition, carry-over effects of high Cu and low pH were still observed. Overall, our results showed that copper and low pH weaken immune functions of hemocyte in oysters, with synergistic effects. This work provides new evidence of sublethal negative effects of metals on marine animals under global change scenarios, and copper likely leads to reduced fitness of oysters under low pH conditions.
  •  
2.
  • Huang, X. Z., et al. (författare)
  • Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus
  • 2018
  • Ingår i: Marine Environmental Research. - 0141-1136. ; 137, s. 49-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochemical responses of the mussel Mytflrn coruscus exposed to different concentrations of titanium dioxide nanoparticles (nano-Ti0(2)) (0, 2.5, 10mgL(-1)) and two pH levels (pH 8.1 and pH 7.3) for 14 days. Mussel responses were also investigated after a 7 days recovery period (pH 8.1 and no nanoparticle). Exposure to nanoTi0(2) led changes in antioxidant indexes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH)), biotransformation enzyme activity (GST) and malondialdehyde level (MDA) in gills and digestive glands. An increase in MDA level and a decrease in SOD and GSH activities were observed in gill of mussels exposed to 10 mg L-n1 nano-TiO2. This effect was more severe in mussels kept at pH 7.3 as compared to pH 8.1. A different response was observed in the digestive gland as SOD, CAT and GSH levels increased in mussels exposed to nano-TiO2. These contrasting results in digestive glands and gills were only evident at high concentration of nano-TiO2 and low pH. A 7 days recovery period was not sufficient to fully restore SOD, GPx, GST, GSH and MDA levels to levels before exposure to nano-TiO2 and low pH. Overall, our results confirmed that seawater acidification modulates effects of nanoparticles in mussels, and that gills are more sensitive to these stressors as compared with digestive glands.
  •  
3.
  • Sui, Y. M., et al. (författare)
  • Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration
  • 2017
  • Ingår i: Ecotoxicology and Environmental Safety. - : Elsevier BV. - 0147-6513. ; 137, s. 94-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean acidification (OA) and hypoxic events are increasing worldwide problems, their interactive effects have not been well clarified, although their co-occurrence is prevalent. The East China Sea (the Yangtze River estuary area) suffers from not only coastal hypoxia but also pH fluctuation, representing an ideal study site to explore the combined effect of OA and hypoxia on marine bivalves. We experimentally evaluated the antioxidant response of the mussel Mytilus coruscus exposed to three pH levels (8.1, 7.7 and 7.3) at two dissolved oxygen (DO) levels (2.0 mg L-1 and 6.0 mg L-1) for 72 h. Activities of superoxide dismutase, catalase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase and levels of malondialdehyde were measured in gills and hemolymph. All enzymatic activities in hemolymph and gills followed a similar pattern throughout the experiment duration. Generally, low DO showed greater effects on enzyme activities than elevated CO2. Significant interactions between DO, pH and time were only observed at superoxide dismutase and catalase in both tissues. PCA revealed positive relationships between most enzyme activities in both gills and hemolymph with the exception of alkaline phosphatase activity and the level of malondialdehyde in the hemolymph. Overall, our results suggested that decreased pH and low DO induced similar antioxidant responses in the hard shelled mussel, and showed an additive effect on most enzyme activities. The evaluation of multiple environmental stessors, a more realistic scenario than single ones, is crucial to predict the effect of future global changes on coastal species and our results supply some insights on the potential combined effects of reduced pH and DO on marine bivalves.
  •  
4.
  • Wu, F. L., et al. (författare)
  • Short-Term Exposure of Mytilus coruscus to Decreased pH and Salinity Change Impacts Immune Parameters of Their Haemocytes
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • With the release of large amounts of CO2, ocean acidification is intensifying and affecting aquatic organisms. In addition, salinity also plays an important role for marine organisms and fluctuates greatly in estuarine and coastal ecosystem, where ocean acidification frequently occurs. In present study, flow cytometry was used to investigate immune parameters of haemocytes in the thick shellmusselMytilus coruscus exposed to different salinities (15, 25, and 35 parts per thousand) and two pH levels (7.3 and 8.1). A 7-day in vivo and a 5-h in vitro experiments were performed. In both experiments, low pH had significant effects on all tested immune parameters. When exposed to decreased pH, total haemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) were significantly decreased, whereas haemocyte mortality (HM) and reactive oxygen species (ROS) were increased. High salinity had no significant effects on the immune parameters of haemocytes as compared with low salinity. However, an interaction between pH and salinity was observed in both experiments for most tested haemocyte parameters. This study showed that high salinity, low salinity and low pH have negative and interactive effects on haemocytes of mussels. As a consequence, it can be expected that the combined effect of low pH and changed salinity will have more severe effects on mussel health than predicted by single exposure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Dupont, Samuel, 1971 (4)
Hu, M. H. (4)
Huang, W (3)
Wu, F. L. (3)
Lu, W. Q. (3)
visa fler...
Sun, M (2)
Xie, Z (2)
Wang, Y. J. (2)
Wang, Youji (2)
Liu, L. P. (2)
Sui, Y. M. (2)
Li, Q. Z. (1)
Jiang, X. Y. (1)
Portner, H. O. (1)
Liu, Z. K. (1)
Kong, H. (1)
Lin, D. H. (1)
Shang, Y. Y. (1)
Li, J-L (1)
Storch, D. (1)
Cui, S. K. (1)
Lan, Y. W. (1)
visa färre...
Lärosäte
Göteborgs universitet (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy