SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dupuy E.) ;pers:(Clarmann T. von)"

Sökning: WFRF:(Dupuy E.) > Clarmann T. von

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Carleer, M. R., et al. (författare)
  • Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics Discussion: An Interactive Open Access Journal of the European Geosciences Union. ; 8:2, s. 4499-4559
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362–2137 cm−1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0–969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed.
  •  
3.
  • Kasai, Y., et al. (författare)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
4.
  • Wolff, M.A., et al. (författare)
  • Validation of HNO3, ClONO2 and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3529-3562
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
  •  
5.
  • Lossow, Stefan, 1977, et al. (författare)
  • Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:9, s. 1855-1874
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of thermal emission in the mid-infrared by Envisat/MIPAS allow the retrieval of HDO information roughly in the altitude range between 10 km and 50 km. From June 2002 to March 2004 MIPAS performed measurements in the full spectral resolution mode. To assess the quality of the HDO data set obtained during that period comparisons with measurements by Odin/SMR and SCISAT/ACE-FTS were performed. Comparisons were made on profile-to-profile basis as well as using seasonal and monthly averages. All in all the comparisons yield favourable results. The largest deviations between MIPAS and ACE-FTS are observed below 15 km, where relative deviations can occasionally exceed 100%. Despite these deviations in the absolute amount of HDO the latitudinal structures observed by both instruments are consistent in this altitude range. Between 15 km and 20 km there is less good agreement, in particular in the Antarctic during winter and spring. Also in the tropics some deviations are found. Above 20 km there is a high consistency in the structures observed by all three instruments. MIPAS and ACE-FTS typically agree within 10%, with MIPAS mostly showing higher abundances than ACE-FTS. Both data sets show considerably more HDO than SMR. This bias can be explained basically by uncertainties in spectroscopic parameters. Above 40 km, where the MIPAS HDO retrieval reaches its limits, still good agreement with the structures observed by SMR is found for most seasons. This puts some confidence in the MIPAS data at these altitudes.
  •  
6.
  • Sagawa, H., et al. (författare)
  • Comparison of SMILES ClO profiles with satellite, balloon-borne and ground-based measurements
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:12, s. 3325-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate the quality of ClO profiles derived from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS). Version 2.1.5 of the level-2 product generated by the National Institute of Information and Communications Technology (NICT) is the subject of this study. Based on sensitivity studies, the systematic error was estimated as 5–10 pptv at the pressure range of 80–20 hPa, 35 pptv at the ClO peak altitude (~ 4 hPa), and 5–10 pptv at pressures ≤ 0.5 hPa for daytime mid-latitude conditions. For nighttime measurements, a systematic error of 8 pptv was estimated for the ClO peak altitude (~ 2 hPa). The SMILES NICT v2.1.5 ClO profiles agree with those derived from another level-2 processor developed by the Japan Aerospace Exploration Agency (JAXA) within the bias uncertainties, except for the nighttime measurements in the low and middle latitude regions where the SMILES NICT v2.1.5 profiles have a negative bias of ~ 30 pptv in the lower stratosphere. This bias is considered to be due to the use of a limited spectral bandwidth in the retrieval process of SMILES NICT v2.1.5, which makes it difficult to distinguish between the weak ClO signal and wing contributions of spectral features outside the bandwidth. In the middle and upper stratosphere outside the polar regions, no significant systematic bias was found for the SMILES NICT ClO profile with respect to data sets from other instruments such as the Aura Microwave Limb Sounder (MLS), the Odin Sub-Millimetre Radiometer (SMR), the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and the ground-based radiometer at Mauna Kea, which demonstrates the scientific usability of the SMILES ClO data including the diurnal variations. Inside the chlorine-activated polar vortex, the SMILES NICT v2.1.5 ClO profiles show larger volume mixing ratios by 0.4 ppbv (30%) at 50 hPa compared to those of the JAXA processed profiles. This discrepancy is also considered to be an effect of the limited spectral bandwidth in the retrieval processing. We also compared the SMILES NICT ClO profiles of chlorine-activated polar vortex conditions with those measured by the balloon-borne instruments: Terahertz and submillimeter Limb Sounder (TELIS) and the MIPAS-balloon instrument (MIPAS-B). In conclusion, the SMILES NICT v2.1.5 ClO data can be used at pressures ≤ ~30 hPa for scientific analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy