SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dwivedi Om Prakash) ;pers:(Prasad Rashmi B.)"

Sökning: WFRF:(Dwivedi Om Prakash) > Prasad Rashmi B.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chandra, Vikash, et al. (författare)
  • The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic β-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in β-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in β-cell development and support TYK2 inhibition in adult β-cells as a potent therapeutic target to halt T1D progression.
  •  
2.
  • Dwivedi, Om Prakash, et al. (författare)
  • Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease
  • 2023
  • Ingår i: iScience. - 2589-0042. ; 26:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12 and CRYAB) to construct a transcriptional “stress score” that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web-resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.
  •  
3.
  • Dwivedi, Om Prakash, et al. (författare)
  • Loss of ZnT8 function protects against diabetes by enhanced insulin secretion
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; , s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
  •  
4.
  • Gusarova, Viktoria, et al. (författare)
  • Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85-0.92, p = 6.3 × 10-10), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49-0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.
  •  
5.
  • Mansour Aly, Dina, et al. (författare)
  • Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes
  • 2021
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 53, s. 1534-1542
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes has been reproducibly clustered into five subtypes with different disease progression and risk of complications; however, etiological differences are unknown. We used genome-wide association and genetic risk score (GRS) analysis to compare the underlying genetic drivers. Individuals from the Swedish ANDIS (All New Diabetics In Scania) study were compared to individuals without diabetes; the Finnish DIREVA (Diabetes register in Vasa) and Botnia studies were used for replication. We show that subtypes differ with regard to family history of diabetes and association with GRS for diabetes-related traits. The severe insulin-resistant subtype was uniquely associated with GRS for fasting insulin but not with variants in the TCF7L2 locus or GRS reflecting insulin secretion. Further, an SNP (rs10824307) near LRMDA was uniquely associated with mild obesity-related diabetes. Therefore, we conclude that the subtypes have partially distinct genetic backgrounds indicating etiological differences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy