SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dybedal Ingunn) srt2:(2001-2004);hsvcat:3"

Sökning: WFRF:(Dybedal Ingunn) > (2001-2004) > Medicin och hälsovetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bryder, David, et al. (författare)
  • Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation
  • 2001
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 194:7, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.
  •  
2.
  • Dybedal, Ingunn, et al. (författare)
  • Human reconstituting hematopoietic stem cells up-regulate Fas expression upon active cell cycling but remain resistant to Fas-induced suppression.
  • 2003
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 102:1, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fas receptor and its ligand have been implicated in mediating the bone marrow (BM) suppression observed in graft-versus-host disease and a number of other BM-failure syndromes. However, previous studies have suggested that Fas is probably not expressed on human hematopoietic stem cells (HSCs), but up-regulated as a consequence of their commitment and differentiation, suggesting that progenitors or differentiated blood cells, rather than HSCs, are the targets of Fas-mediated suppression. The present studies confirm that candidate HSCs in human cord blood and BM lack constitutive expression of Fas, but demonstrate that Fas expression on CD34+ progenitor and stem cells is correlated to their cell cycle and activation status. With the use of recently developed in vitro conditions promoting HSC self-renewing divisions, Fas was up-regulated on virtually all HSCs capable of multilineage reconstituting nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice in vivo, as well as on long-term culture-initiating cells (LTC-ICs). Similarly, in vivo cycling of NOD-SCID repopulating cells upon transplantation, resulted in up-regulation of Fas expression. However, repopulating HSCs expressing high levels of Fas remained highly resistant to Fas-mediated suppression, and HSC function was compromised only upon coactivation with tumor necrosis factor. Thus, reconstituting human HSCs up-regulate Fas expression upon active cycling, demonstrating that HSCs could be targets for Fas-mediated BM suppression. (Blood. 2003;102: 118-126)
  •  
3.
  • Dybedal, Ingunn, et al. (författare)
  • Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells
  • 2001
  • Ingår i: Blood. - 1528-0020. ; 98:6, s. 1782-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cell (HSC) fate decisions between self-renewal and commitment toward differentiation are tightly regulated in vivo. Recent developments in HSC culture and improvements of human HSC assays have facilitated studies of these processes in vitro. Through such studies stimulatory cytokines critically involved in HSC maintenance in vivo have been demonstrated to also promote HSC self-renewing divisions in vitro. Evidence for negative regulators of HSC self-renewal is, however, lacking. Tumor necrosis factor (TNF), if overexpressed, has been implicated to mediate bone marrow suppression. However, whether and how TNF might affect the function of HSC with a combined myeloid and lymphoid reconstitution potential has not been investigated. In the present studies in vitro conditions recently demonstrated to promote HSC self-renewing divisions in vitro were used to study the effect of TNF on human HSCs capable of reconstituting myelopoiesis and lymphopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Although all cord blood and adult bone marrow CD34(+)CD38(-) cells were capable of undergoing cell divisions in the presence of TNF, cycling HSCs exposed to TNF in vitro and in vivo were severely compromised in their ability to reconstitute NOD-SCID mice and long-term cultures. The negative effect of TNF was not dependent on the Fas pathway, and a similar effect could be observed using a mutant TNF exclusively targeting the p55 TNF receptor. TNF did not appear to enhance apoptosis or affect cell-cycle distribution of cultured progenitors, but rather promoted myeloid differentiation. Thus, TNF might regulate HSC fate by promoting their differentiation rather than self-renewal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Dybedal, Ingunn (3)
Bryder, David (2)
Jacobsen, Sten Eirik ... (2)
Adolfsson, Jörgen (1)
Högerkorp, Carl-Magn ... (1)
visa fler...
Ramsfjell, Veslemøy (1)
Borge, Ole Johan (1)
Theilgaard-Monch, Ki ... (1)
Fossum, Anna (1)
Rusten, Leiv S. (1)
visa färre...
Lärosäte
Lunds universitet (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy