SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edman Åke) ;lar1:(su)"

Sökning: WFRF:(Edman Åke) > Stockholms universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berg, Stefan, et al. (författare)
  • Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes : Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 276:25, s. 22056-22063
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of the nonbilayer-prone α-monoglucosyldiacylglycerol (MGlcDAG) is crucial for bilayer packing properties and the                     lipid surface charge density in the membrane ofAcholeplasma laidlawii. The gene for the responsible, membrane-bound glucosyltransferase (alMGS) (EC 2.4.1.157) was sequenced and functionally cloned in Escherichia coli, yielding MGlcDAG in the recombinants. Similar amino acid sequences were encoded in the genomes of several Gram-positive                     bacteria (especially pathogens), thermophiles, archaea, and a few eukaryotes. All of these contained the typical EX7E catalytic motif of the CAZy family 4 of α-glycosyltransferases. The synthesis of MGlcDAG by a close sequence analog from                      Streptococcus pneumoniae (spMGS) was verified by polymerase chain reaction cloning, corroborating a connection between sequence and functional similarity                     for these proteins. However, alMGS and  spMGS varied in dependence on anionic phospholipid activators phosphatidylglycerol                     and cardiolipin, suggesting certain regulatory differences. Fold predictions strongly indicated a similarity for alMGS (and                     spMGS) with the two-domain structure of the E. coli MurG cell envelope glycosyltransferase and several amphipathic membrane-binding segments in various proteins. On the basis                     of this structure, the alMGS sequence charge distribution, and anionic phospholipid dependence, a model for the bilayer surface                     binding and activity is proposed for this regulatory enzyme.
  •  
2.
  • Edman, Maria, et al. (författare)
  • Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae
  • 2003
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 278:10, s. 8420-8428
  • Tidskriftsartikel (refereegranskat)abstract
    • In membranes of Acholeplasma laidlawii two consecutively acting glucosyltransferases, the (i) alpha-monoglucosyl-diacylglycerol. (MGlcDAG) synthase (aIMGS) (EC 2.4.1.157) and the (ii) alpha-diglucosyl-DAG (DGlcDAG) synthase (alDGS) (EC 2.4.1.208), are involved in maintaining (i) a certain anionic lipid surface charge density and (ii) constant nonbilayer/bilayer conditions (curvature packing stress), respectively. Cloning of the aIDGS gene revealed related uncharacterized sequence analogs especially in several Gram-positive pathogens, thermophiles and archaea, where the encoded enzyme function of a potential Streptococcus pneumoniae DGS gene (cpoA) was verified. A strong stimulation of aIDGS by phosphatidylglycerol (PG), cardiolipin, or nonbilayer-prone 1,3-DAG was observed, while only PG stimulated CpoA. Several secondary structure prediction and fold recognition methods were used together with SWISS-MODEL to build three-dimensional model structures for three MGS and two DGS lipid glycosyltransferases. Two Escherichia coli proteins with known structures were identified as the best templates, the membrane surface-associated two-domain glycosyltransferase MurG and the soluble GlcNAc epimerase. Differences in electrostatic surface potential between the different models and their individual domains suggest that electrostatic interactions play a role for the association to membranes. Further support for this was obtained when hybrids of the N- and C-domain, and full size alMGS with green fluorescent protein were localized to different regions of the E. coli inner membrane and cytoplasm in vivo. In conclusion, it is proposed that the varying abilities to bind, and sense lipid charge and curvature stress, are governed by typical differences in charge (pI values), amphiphilicity, and hydrophobicity for the N- and (catalytic) C-domains of these structurally similar membrane-associated enzymes.
  •  
3.
  • Rajalahti, Tarja, et al. (författare)
  • Proteins in different Synechocystis compartments have distinguishing N-terminal features : a combined proteomics and multivariate sequence analysis
  • 2007
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:7, s. 2420-2434
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria have a cell envelope consisting of a plasma membrane, a periplasmic space with a peptidoglycan layer, and an outer membrane. A third, separate membrane system, the intracellular thylakoid membranes, is the site for both photosynthesis and respiration. All membranes and luminal spaces have unique protein compositions, which impose an intriguing mechanism for protein sorting of extracytoplasmic proteins due to single sets of translocation protein genes. It is shown here by multivariate sequence analyses of many experimentally identified proteins in Synechocystis, that proteins routed for the different extracytosolic compartments have correspondingly different physicochemical properties in their signal peptide and mature N-terminal segments. The full-length mature sequences contain less significant information. From these multivariate, N-terminal property-profile models for proteins with single experimental localization, proteins with ambiguous localization could, to a large extent, be predicted to a defined compartment. The sequence properties involve amino acids varying especially in volume and polarizability and at certain positions in the sequence segments, in a manner typical for the various compartment classes. Potential means of the cell to recognize the property features are discussed, involving the translocation channels and two Type I signal peptidases with different cellular localization, and charge features at their membrane interfaces.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy