SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edström Kristina Professor 1958 ) ;lar1:(uu)"

Sökning: WFRF:(Edström Kristina Professor 1958 ) > Uppsala universitet

  • Resultat 1-10 av 142
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edström, Kristina, Professor, 1958- (författare)
  • Battery 2030+ Roadmap
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is the biggest challenge facing the world today. Europe is committed to achieving a climate-neutral society by 2050, as stated in the European Green Deal.1 The transition towards a climate-neutral Europe requires fundamental changes in the way we generate and use energy. If batteries can be made simultaneously more sustainable, safe, ultrahigh performing, and affordable, they will be true enablers, “accelerating the shift towards sustainable and smart mobility; supplying clean, affordable and secure energy; and mobilizing industry for a clean and circular economy” - all of which are important elements of the UN Sustainable Development Goals.In other words, batteries are a key technology for battling carbon dioxide emissions from the transport, power, and industry sectors. However, to reach our sustainability goals, batteries must exhibit ultra-high performance beyond their capabilities today. Ultra-high performance includes energy and power performance approaching theoretical limits, outstanding lifetime and reliability, and enhanced safety and environmental sustainability. Furthermore, to be commercially successful, these batteries must support scalability that enables cost-effective large-scale production.BATTERY 2030+, is the large-scale, long-term European research initiative with the vision of inventing the sustainable batteries of the future, to enable Europe to reach the goals envisaged in the European Green Deal. BATTERY 2030+ is at the heart of a green and connected society.BATTERY 2030+ will contribute to create a vibrant battery research and development (R&D) community in Europe, focusing on long-term research that will continuously feed new knowledge and technologies throughout the value chain, resulting in new products and innovations. In addition, the initiative will attract talent from across Europe and contribute to ensure access to competences needed for ongoing societal transformation.The BATTERY 2030+ aims are:• to invent ultra-high performance batteries that are safe, affordable, and sustainable, witha long lifetime.• to provide new tools and breakthrough technologies to the European battery industrythroughout the value chain.• to enable long-term European leadership in both existing markets (e.g., transport andstationary storage) and future emerging sectors (e.g., robotics, aerospace, medical devices, and Internet of things)With this roadmap, BATTERY 2030+ advocates research directions based on a chemistry-neutral approach that will allow Europe to reach or even surpass its ambitious battery performance targets set in the European Strategic Energy Technology Plan (SET-Plan)3 and foster innovation throughout the battery value chain.
  •  
2.
  • Koriukina, Tatiana, 1994- (författare)
  • Titanium-Based Negative Electrode Materials for Rechargeable Batteries : In Search of the Redox Reactions
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Rechargeable batteries, particularly, lithium-ion batteries (LIBs) have proven to be stable and reliable energy storage devices over the past few decades. The rapid demands regarding battery applications and the pressure to move away from the fossil fuel era drive the search for new materials for better rechargeable batteries for electric vehicles, renewable energy storage, and portable electronics. In this context a deeper understanding of the electrochemical processes governing the electrochemical behaviour of batteries is required. This thesis work investigates the use of two titanium-based materials as negative electrode materials for lithium- and sodium-ion batteries. The focus is on identifying the redox reactions responsible for the electrochemical capacities observed for the materials. Having knowledge of the available redox reactions for new materials used in batteries is crucial in predicting whether they can compete with existing battery chemistries and be commercially viable.One part of this thesis work examines the electrochemical behaviuor of a 2D titanium carbide, Ti3C2Tx, a member of the MXene family, in lithium- and sodium-ion batteries. The other part explores an A-site cation deficient Li0.18Sr0.66Ti0.5Nb0.5O3 (L018STN) perovskite oxide, known for its high lithium-ion conductivity, in LIBs. The electrodes were electrochemically evaluated in pouch-cell batteries and analysed post hoc by means of X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The results indicate that only the surface Ti(I), Ti(II), Ti(III), and Ti(IV) titanium species of the Ti3C2Tx flakes participate in the redox reactions and give rise to the electrochemical capacity. Furthermore, the restacking of individual flakes within the bulk of the Ti3C2Tx electrode limits the electroactive surface of a freestanding Ti3C2Tx electrode that is available for the redox reactions. The reversible capacities of Ti3C2Tx electrodes can be improved by long-term cycling (an effect known as capacity activation) and heat treatment, as the surface titanium species gradually oxidise to higher oxidation states, e.g., Ti(III) and Ti(IV), or transform to titanium oxides TixOy. The results for L018STN electrodes show that both titanium and niobium are redox active on over-lithiation, that is, when more than one Li+ was inserted per a vacant A-site. The structural reorganization during over-lithiation enabled access to diffusion paths for fast lithium-ion diffusion even when a high concentration of lithium was inserted into the structure. The findings of this thesis work thus indicate that a portion of the Ti3C2Tx electrode is electrochemically inactive when subjected to electrochemical cycling. This can be ascribed to its structure and two-dimensional nature. As a result, Ti3C2Tx cannot outperform existing negative electrodes for lithium- or sodium-ion batteries. The results obtained for L018STN provide valuable information on the lithium-ion diffusion behaviours in A-site cation deficient perovskite oxides. In a broader sense, this thesis work emphasises the significance of employing a multi-technique approach to obtain a good understanding of the underlying redox mechanisms when analysing battery materials. 
  •  
3.
  • Kotronia, Antonia (författare)
  • Probing Critical Interfaces in Dual-Ion Batteries : The Road Towards Performant Graphite Cathodes
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transitioning into a zero-emission society will require massive efforts with respect to the harnessing and storage of renewable energy resources. The development of large-scale, electrochemical energy storage systems based on abundant and environmentally benign compounds is seen upon as a key factor for guaranteeing a successful outcome. On these grounds, research into post lithium-ion battery technologies has become increasingly important. Among emerging concepts is that of dual-ion batteries (DIBs); the operational mechanism of which uses both the cation and anion in the electrolyte. DIBs offer some unique advantages compared to other cell chemistries, owing to the unconventional materials combinations they enable. Graphite versus graphite cells constitute a cell chemistry which results in high average voltage (> 4.5 V), decent specific capacity (~100 mAh g-1) and which eliminates transition metals from the cathode. Despite considerable merits, graphite versus graphite dual-ion cells have proven difficult to realize, mainly due to the instability of the cathode electrolyte interface (CEI) at high potentials. This thesis explores critical interfaces in both Li- and K-based DIBs and considers strategies to mitigate these instabilities, based on a combination of electrode and electrolyte engineering. The influence of the electrolyte salt and solvent on the CEI is studied through electrochemical characterization methods and X-ray photoelectron spectroscopy (XPS). Conventional LiPF6-based electrolytes are contrasted to formulations using high concentrations of lithium imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The impact of incorporating functional additives and precycling protocols to reduce electrochemical irreversibility is discussed for Li4Ti5O12‑graphite and MoS2-graphite cells tailored for Li- and K-based DIBs, respectively. In addition, a ternary ionogel is introduced as a novel electrolyte platform for DIBs due to its promising ionic conductivity, oxidative stability and mechanical properties. Finally, the impact of different electrode binders on the surface chemistry and electrochemical performance of the graphite cathode is elucidated. In summary, this work indicated that a passivating, anion conducting CEI is key to enabling dual-ion batteries. Despite the cumbersome nature of this task, ways forward were highlighted both in terms of concrete examples, such as the construction of DIBs incorporating functional additives (e.g. triallyl phosphate) and binders (e.g. poly(vinylidene fluoride-co-hexafluoropropylene)), and in terms of methodology, including the design of reliable cycling protocols to evaluate DIB-performance.
  •  
4.
  • Källquist, Ida (författare)
  • Interfaces in Li-ion batteries seen through photoelectron spectroscopy
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To accommodate the need for greener energy solutions renewable energy sources aswell as reliable energy storage is a prerequisite. For the latter, high energy densitybatteries with long-term cycling stability are necessary. The cycling properties of abattery is to a large extent dependent on the functionality of the battery interfaces. Assuch, there is a need to understand the reactions occurring between the electrode andelectrolyte, and to limit those that are detrimental to the battery performance. Thetopic of this thesis is these interfaces in Li-ion batteries seen through photoelectronspectroscopy (PES).PES is due to its surface and chemical sensitivity one of the most suitable techniquesto study battery interfaces. In this thesis, PES is used to follow the oxidationstate and chemical environment of different atoms to understand the reactions occurringin the battery. This work uses a combination of soft and hard X-ray photoelectronspectroscopy as well X-ray absorption spectroscopy (XAS) to investigate the degradationmechanisms in high energy density cathode materials. The materials investigatedare in the class of Li-rich disordered rock-salts (DRS) and provide very highinitial capacities, but unfortunately lacks in cycling stability. In this thesis it is shownthat the reason for this is an unstable surface, possibly related to the occurrence ofanionic redox in the material, leading to breakdown of both electrolyte and electrodematerial. In addition, it is shown that the interface stability can be improved by choosingtransition metals that promotes the DRS structure and thus increases the chemicalstability of the material and long term cycling of the battery.Even though ex situ measurements provide many insights into the properties ofbattery interphases, there is still a need for operando measurement to completely answerthe puzzling question of their full functionality. In this thesis first steps towardsoperando measurements are taken by identifying the measurements conditions necessaryto probe a battery electrolyte with ambient pressure photoelectron spectroscopy(APPES) and a thorough characterization of a typical battery electrolyte is performed.The results show that the liquid can be stabilized by using the solvent as ambient gas,and also that care should be taken to avoid radiation damage when synchrotron lightis used. For the electrolyte characterization it is shown that a salt enrichment of particularlyLi+ and ionic fluoride is found at the droplet surface. These results are crucialto be able to single out contributions from the interphase in future operando measurements.When the method of operando APPES has matured and can be performed routinely,this could possibly be the key needed to understand how the interfaces in batteriescan be controlled to unlock the potential of stable high capacity materials infuture batteries.
  •  
5.
  • Nilsson, Viktor, 1985- (författare)
  • Highly Concentrated Electrolytes for Lithium Batteries : From fundamentals to cell tests
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The electrolyte is a crucial part of any lithium battery, strongly affecting longevity and safety. It has to survive rather severe conditions, not the least at the electrode/electrolyte interfaces. Current commercial electrolytes based on 1 M LiPF 6 in a mixture of organic solvents balance the requirements on conductivity and electrochemical stability, but they are volatile and degrade when operated at temperatures above ca. 70°C. The salt could potentially be replaced with e.g. LiTFSI, but corrosion of the aluminium current collector is an issue. Replacing the graphite negative electrode by Li metal for large gains in energy density challenges the electrolyte further by exposing it to freshly deposited Li, leading to poor coulombic efficiency (CE) and consumption of both Li and electrolyte. Highly concentrated electrolytes (up to > 4 M) have emerged as a possible remedy, by a changed solvation structure such that all solvent molecules are coordinated to cations – leading to a lowered volatility and melting point, an increased charge carrier density and electrochemical stability, but a higher viscosity and a lower ionic conductivity.Here two approaches to highly concentrated electrolytes are evaluated. First, LiTFSI and acetonitrile electrolytes with respect to increased electrochemical stability and in particular the passivating solid electrolyte interphase (SEI) on the anode is studied using electrochemical techniques and X-ray photoelectron spectroscopy. Second, lowering the liquidus temperature by high salt concentration is utilized to create an electrolyte solely of LiTFSI and ethylene carbonate, tested for application in Li metal batteries by characterizing the morphology of plated Li using scanning electron microscopy and the CE by galvanostatic polarization. While the first approach shows dramatic improvements, the inherent weaknesses cannot be completely avoided, the second approach provides some promising cycling results for Li metal based cells. This points towards further investigations of the SEI, and possibly long-term safe cycling of Li metal anodes.
  •  
6.
  • Slawinski, Wojciech Andrzej, 1980, et al. (författare)
  • Neutron Pair Distribution Function Study of FePO4 and LiFePO4
  • 2019
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 31:14, s. 5024-5034
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron powder diffraction studies of the compounds FePO4 and LiFePO4 are reported. Rietveld refinement of the diffraction data provides averaged structures for both materials that are in good agreement with the published structures. In addition, detailed investigations of the short-range ion-ion correlations within each compound have been performed using the reverse Monte Carlo (RMC) modeling of the total scattering (Bragg plus diffuse) data. Although the short-range structural information for LiFePO4 is consistent with the long-range (averaged) picture, a small, but statistically significant, proportion of the anions is displaced away from their ideal sites within the RMC configurations of FePO4. These anion displacements are discussed in terms of a small concentration of Li+/Fe2+ occupying the empty octahedral sites, probably arising from incomplete delithiation of the LiFePO4 and/or antisite (Li+-Fe2+) defects introduced during the delithiation process.
  •  
7.
  • Ahlberg Tidblad, Annika, et al. (författare)
  • Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective
  • 2021
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 14:14
  • Forskningsöversikt (refereegranskat)abstract
    • Nowadays, batteries for electric vehicles are expected to have a high energy density, allow fast charging and maintain long cycle life, while providing affordable traction, and complying with stringent safety and environmental standards. Extensive research on novel materials at cell level is hence needed for the continuous improvement of the batteries coupled towards achieving these requirements. This article firstly delves into future developments in electric vehicles from a technology perspective, and the perspective of changing end-user demands. After these end-user needs are defined, their translation into future battery requirements is described. A detailed review of expected material developments follows, to address these dynamic and changing needs. Developments on anodes, cathodes, electrolyte and cell level will be discussed. Finally, a special section will discuss the safety aspects with these increasing end-user demands and how to overcome these issues.
  •  
8.
  • Ahlgren, Per, 1960-, et al. (författare)
  • A bibliometric analysis of battery research with the BATTERY 2030+ roadmap as point of departure
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • In this bibliometric study, we analyze the six battery research subfields identified in the BATTERY 2030+ roadmap: Battery Interface Genome, Materials Acceleration Platform, Recyclability, Smart functionalities: Self-healing, Smart functionalities: Sensing, and Manufacturability. In addition, we analyze the entire research field related to BATTERY 2030+ as a whole, using two operationalizations. We (a) evaluate the European standing in the subfields/the BATTERY 2030+ field in comparison to the rest of the world, and (b) identify strongholds of the subfields/the BATTERY 2030+ field across Europe. For each subfield and the field as a whole, we used seed articles, i.e. articles listed in the BATTERY 2030+ roadmap or cited by such articles, in order to generate additional, similar articles located in an algorithmically obtained classification system. The output of the analysis is publication volumes, field normalized citation impact values with comparisons between country/country aggregates and between organizations, co-publishing networks between countries and organizations, and keyword co-occurrence networks. For the results related to (a), the performance of EU & associated (countries) is similar to China and the aggregate Japan-South Korea-Singapore and well below North America regarding citation impact and with respect to the field as a whole. Exceptions are, however, the subfields Battery Interface Genome and Recyclability. For the results related to (b), there is a large variability in the EU & associated organizations regarding volume in the different subfields. For citation impact, examples of high-performing EU & associated organizations are ETH Zurich and Max Planck Society for the Advancement of Science.
  •  
9.
  • Ahlgren, Per, 1960-, et al. (författare)
  • BATTERY 2030+ and its Research Roadmap : A Bibliometric Analysis.
  • 2023
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 16:21
  • Tidskriftsartikel (refereegranskat)abstract
    • In this bibliometric study, we analyze two of the six battery research subfields identified in the BATTERY 2030+ roadmap: Materials Acceleration Platform and Smart functionalities: Sensing. In addition, we analyze the entire research field related to BATTERY 2030+ as a whole. We (a) evaluate the European standing in the two subfields/the BATTERY 2030+ field in comparison to the rest of the world, and (b) identify strongholds of the two subfields/the BATTERY 2030+ field across Europe. For each subfield and the field as a whole, we used seed articles, i. e. articles listed in the BATTERY 2030+ roadmap or cited by such articles, in order to generate additional, similar articles located in an algorithmically obtained classification system. The output of the analysis is publication volumes, field normalized citation impact values with comparisons between country/country aggregates and between organizations, co-publishing networks between countries and organizations, and keyword co-occurrence networks.
  •  
10.
  • Aktekin, Burak, et al. (författare)
  • Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO) : In Situ Neutron Diffraction and Performance in Li Ion Full Cells
  • 2019
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 2:5, s. 3323-3335
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium ion cells utilizing LiNi0.5Mn1.5O4 (LNMO) as the positive electrode are prone to fast capacity fading, especially when operated in full cells and at elevated temperatures. The crystal structure of LNMO can adopt a P4(3)32 (cation-ordered) or Fd (3) over barm (disordered) arrangement, and the fading rate of cells is usually mitigated when samples possess the latter structure. However, synthesis conditions leading to disordering also lead to oxygen deficiencies and rock-salt impurities and as a result generate Mn3+. In this study, in situ neutron diffraction was performed on disordered and slightly Mn-rich LNMO samples to follow cation ordering-disordering transformations during heating and cooling. The study shows for the first time that there is not a direct connection between oxygen release and cation disordering, as cation disordering is observed to start prior to oxygen release when the samples are heated in a pure oxygen atmosphere. This result demonstrates that it is possible to tune disordering in LNMO without inducing oxygen deficiencies or forming the rock-salt impurity phase. In the second part of the study, electrochemical testing of samples with different degrees of ordering and oxygen content has been performed in LNMO vertical bar vertical bar LTO (Li4Ti5O12) full cells. The disordered sample exhibits better performance, as has been reported in other studies; however, we observe that all cells behave similarly during the initial period of cycling even when discharged at a 10 C rate, while differences arise only after a period of cycling. Additionally, the differences in fading rate were observed to be time-dependent rather than dependent on the number of cycles. This performance degradation is believed to be related to instabilities in LNMO at higher voltages, that is, in its lower lithiation states. Therefore, it is suggested that future studies should target the individual effects of ordering and oxygen content. It is also suggested that more emphasis during electrochemical testing should be placed on the stability of samples in their delithiated state.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 142
Typ av publikation
tidskriftsartikel (96)
konferensbidrag (20)
forskningsöversikt (9)
annan publikation (7)
rapport (4)
doktorsavhandling (3)
visa fler...
licentiatavhandling (3)
visa färre...
Typ av innehåll
refereegranskat (105)
övrigt vetenskapligt/konstnärligt (37)
Författare/redaktör
Edström, Kristina, P ... (142)
Brandell, Daniel, 19 ... (45)
Younesi, Reza (28)
Nyholm, Leif, 1961- (24)
Hahlin, Maria (19)
Kotronia, Antonia (17)
visa fler...
Asfaw, Habtom Desta, ... (14)
Naylor, Andrew J. (14)
Valvo, Mario (12)
Strømme, Maria, 1970 ... (11)
Mindemark, Jonas (11)
Källquist, Ida (11)
Hernández, Guiomar (10)
Brant, William (10)
Björklund, Erik (8)
Gustafsson, Torbjörn ... (8)
Tai, Cheuk-Wai (7)
Aktekin, Burak (7)
Fichtner, Maximilian (7)
Maibach, Julia (7)
Duda, Laurent (6)
Sun, Rui (6)
Sun, Junliang (5)
Berg, Erik (5)
Vegge, Tejs (5)
Zipprich, Wolfgang (5)
Tengstedt, Carl (5)
Grimaud, Alexis (5)
Lindh, Jonas, 1977- (5)
Saadoune, Ismael (5)
Rensmo, Håkan (4)
Nordh, Tim, 1988- (4)
Ayerbe, Elixabete (4)
Lindgren, Fredrik (4)
Baur, Christian (4)
Brant, William R. (4)
Abbrent, Sabina (3)
Pettersson, Jean (3)
Johansson, Patrik, 1 ... (3)
Marzano, Fernanda (3)
Lacey, Matthew (3)
Ma, Yue (3)
Castelli, Ivano E. (3)
Cekic-Laskovic, Isid ... (3)
Clark, Simon (3)
Dominko, Robert (3)
Asfaw, Habtom Desta, ... (3)
Chable, Johann (3)
Liivat, Anti (3)
Jeschull, Fabian (3)
visa färre...
Lärosäte
Stockholms universitet (9)
Chalmers tekniska högskola (8)
Kungliga Tekniska Högskolan (6)
Lunds universitet (3)
RISE (3)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (141)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (130)
Teknik (27)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy