SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edström Kristina Professor 1958 ) ;pers:(Hahlin Maria)"

Sökning: WFRF:(Edström Kristina Professor 1958 ) > Hahlin Maria

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edström, Kristina, Professor, 1958- (författare)
  • Battery 2030+ Roadmap
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is the biggest challenge facing the world today. Europe is committed to achieving a climate-neutral society by 2050, as stated in the European Green Deal.1 The transition towards a climate-neutral Europe requires fundamental changes in the way we generate and use energy. If batteries can be made simultaneously more sustainable, safe, ultrahigh performing, and affordable, they will be true enablers, “accelerating the shift towards sustainable and smart mobility; supplying clean, affordable and secure energy; and mobilizing industry for a clean and circular economy” - all of which are important elements of the UN Sustainable Development Goals.In other words, batteries are a key technology for battling carbon dioxide emissions from the transport, power, and industry sectors. However, to reach our sustainability goals, batteries must exhibit ultra-high performance beyond their capabilities today. Ultra-high performance includes energy and power performance approaching theoretical limits, outstanding lifetime and reliability, and enhanced safety and environmental sustainability. Furthermore, to be commercially successful, these batteries must support scalability that enables cost-effective large-scale production.BATTERY 2030+, is the large-scale, long-term European research initiative with the vision of inventing the sustainable batteries of the future, to enable Europe to reach the goals envisaged in the European Green Deal. BATTERY 2030+ is at the heart of a green and connected society.BATTERY 2030+ will contribute to create a vibrant battery research and development (R&D) community in Europe, focusing on long-term research that will continuously feed new knowledge and technologies throughout the value chain, resulting in new products and innovations. In addition, the initiative will attract talent from across Europe and contribute to ensure access to competences needed for ongoing societal transformation.The BATTERY 2030+ aims are:• to invent ultra-high performance batteries that are safe, affordable, and sustainable, witha long lifetime.• to provide new tools and breakthrough technologies to the European battery industrythroughout the value chain.• to enable long-term European leadership in both existing markets (e.g., transport andstationary storage) and future emerging sectors (e.g., robotics, aerospace, medical devices, and Internet of things)With this roadmap, BATTERY 2030+ advocates research directions based on a chemistry-neutral approach that will allow Europe to reach or even surpass its ambitious battery performance targets set in the European Strategic Energy Technology Plan (SET-Plan)3 and foster innovation throughout the battery value chain.
  •  
2.
  • Källquist, Ida (författare)
  • Interfaces in Li-ion batteries seen through photoelectron spectroscopy
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To accommodate the need for greener energy solutions renewable energy sources aswell as reliable energy storage is a prerequisite. For the latter, high energy densitybatteries with long-term cycling stability are necessary. The cycling properties of abattery is to a large extent dependent on the functionality of the battery interfaces. Assuch, there is a need to understand the reactions occurring between the electrode andelectrolyte, and to limit those that are detrimental to the battery performance. Thetopic of this thesis is these interfaces in Li-ion batteries seen through photoelectronspectroscopy (PES).PES is due to its surface and chemical sensitivity one of the most suitable techniquesto study battery interfaces. In this thesis, PES is used to follow the oxidationstate and chemical environment of different atoms to understand the reactions occurringin the battery. This work uses a combination of soft and hard X-ray photoelectronspectroscopy as well X-ray absorption spectroscopy (XAS) to investigate the degradationmechanisms in high energy density cathode materials. The materials investigatedare in the class of Li-rich disordered rock-salts (DRS) and provide very highinitial capacities, but unfortunately lacks in cycling stability. In this thesis it is shownthat the reason for this is an unstable surface, possibly related to the occurrence ofanionic redox in the material, leading to breakdown of both electrolyte and electrodematerial. In addition, it is shown that the interface stability can be improved by choosingtransition metals that promotes the DRS structure and thus increases the chemicalstability of the material and long term cycling of the battery.Even though ex situ measurements provide many insights into the properties ofbattery interphases, there is still a need for operando measurement to completely answerthe puzzling question of their full functionality. In this thesis first steps towardsoperando measurements are taken by identifying the measurements conditions necessaryto probe a battery electrolyte with ambient pressure photoelectron spectroscopy(APPES) and a thorough characterization of a typical battery electrolyte is performed.The results show that the liquid can be stabilized by using the solvent as ambient gas,and also that care should be taken to avoid radiation damage when synchrotron lightis used. For the electrolyte characterization it is shown that a salt enrichment of particularlyLi+ and ionic fluoride is found at the droplet surface. These results are crucialto be able to single out contributions from the interphase in future operando measurements.When the method of operando APPES has matured and can be performed routinely,this could possibly be the key needed to understand how the interfaces in batteriescan be controlled to unlock the potential of stable high capacity materials infuture batteries.
  •  
3.
  • Aktekin, Burak, et al. (författare)
  • How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:6, s. 6001-6013
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of LiNi0.5O4 (LNMO) can adopt either low-symmetry ordered (Fd (3) over barm) or high-symmetry disordered (P4(3)32) space group depending on the synthesis conditions. A majority of published studies agree on superior electrochemical performance of disordered LNMO, but the underlying reasons for improvement remain unclear due to the fact that different thermal history of the samples affects other material properties such as oxygen content and particle morphology. In this study, ordered and disordered samples were prepared with a new strategy that renders samples with identical properties apart from their cation ordering degree. This was achieved by heat treatment of powders under pure oxygen atmosphere at high temperature with a final annealing step at 710 degrees C for both samples, followed by slow or fast cooling. Electrochemical testing showed that cation disordering improves the stability of material in charged (delithiated) state and mitigates the impedance rise in LNMO parallel to LTO (Li4Ti5O12) and LNMO parallel to Li cells. Through X-ray photoelectron spectroscopy (XPS), thicker surface films were observed on the ordered material, indicating more electrolyte side reactions. The ordered samples also showed significant changes in the Ni 2p XPS spectra, while the generation of ligand (oxygen) holes was observed in the Ni-O environment for both samples using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Moreover, high-resolution transmission electron microscopy (HRTEM) images indicated that the ordered samples show a decrease in ordering near the particle surface after cycling and a tendency toward rock-salt-like phase transformations. These results show that the structural arrangement of Mn/Ni (alone) has an effect on the surface and "nearsurface" properties of LNMO, particularly in delithiated state, which is likely connected to the bulk electronic properties of this electrode material.
  •  
4.
  • Baur, Christian, et al. (författare)
  • Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:37, s. 21244-21253
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-rich transition metal disordered rock salt (DRS) oxyfluorides have the potential to lessen one large bottleneck for lithium ion batteries by improving the cathode capacity. However, irreversible reactions at the electrode/electrolyte interface have so far led to fast capacity fading during electrochemical cycling. Here, we report the synthesis of two new Li-rich transition metal oxyfluorides Li2V0.5Ti0.5O2F and Li2V0.5Fe0.5O2F using the mechanochemical ball milling procedure. Both materials show substantially improved cycling stability compared to Li2VO2F. Rietveld refinements of synchrotron X-ray diffraction patterns reveal the DRS structure of the materials. Based on density functional theory (DFT) calculations, we demonstrate that substitution of V3+ with Ti3+ and Fe3+ favors disordering of the mixed metastable DRS oxyfluoride phase. Hard X-ray photoelectron spectroscopy shows that the substitution stabilizes the active material electrode particle surface and increases the reversibility of the V3+/V5+ redox couple. This work presents a strategy for stabilization of the DRS structure leading to improved electrochemical cyclability of the materials.
  •  
5.
  • Björklund, Erik, et al. (författare)
  • How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries
  • 2017
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 164:13, s. A3054-A3059
  • Tidskriftsartikel (refereegranskat)abstract
    • The cycle life of LiNi1/3Co1/3Mn1/3O2 (NMC) based cells are significantly influenced by the choice of the negative electrode. Electrochemical testing and post mortem surface analysis are here used to investigate NMC electrodes cycled vs. either Li-metal, graphite or Li4Ti5O12 (LTO) as negative electrodes. While NMC-LTO and NMC-graphite cells show small capacity fading over 200 cycles, NMC-Li-metal cell suffers from rapid capacity fading accompanied with an increased voltage hysteresis despite the almost unlimited access of lithium. X-ray absorption near edge structure (XANES) results show that no structural degradation occurs on the positive electrode even after >200 cycles, however, X-ray photoelectron spectroscopy (XPS) results shows that the composition of the surface layer formed on the NMC cathode in the NMC-Li-metal cell is largely different from that of the other NMC cathodes (cycled in the NMC-graphite or NMC-LTO cells). Furthermore, it is shown that the surface layer thickness on NMC increases with the number of cycles, caused by continuous electrolyte degradation products formed at the Li-metal negative electrode and then transferred to NMC positive electrode.
  •  
6.
  •  
7.
  • Koriukina, Tatiana, 1994-, et al. (författare)
  • On the Use of Ti3C2TX MXene as a Negative Electrode Material for Lithium-Ion Batteries
  • 2022
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7:45, s. 41696-41710
  • Tidskriftsartikel (refereegranskat)abstract
    • The pursuit of new and better battery materials has given rise to numerous studies of the possibilities to use two-dimensional negative electrode materials, such as MXenes, in lithium-ion batteries. Nevertheless, both the origin of the capacity and the reasons for significant variations in the capacity seen for different MXene electrodes still remain unclear, even for the most studied MXene: Ti3C2Tx. Herein, freestanding Ti3C2Tx MXene films, composed only of Ti3C2Tx MXene flakes, are studied as additive-free negative lithium-ion battery electrodes, employing lithium metal half-cells and a combination of chronopotentiometry, cyclic voltammetry, X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy experiments. The aim of this study is to identify the redox reactions responsible for the observed reversible and irreversible capacities of Ti3C2Tx- based lithium-ion batteries as well as the reasons for the significant capacity variation seen in the literature. The results demonstrate that the reversible capacity mainly stems from redox reactions involving the Tx-Ti-C titanium species situated on the surfaces of the MXene flakes, whereas the Ti-C titanium present in the core of the flakes remains electro-inactive. While a relatively low reversible capacity is obtained for electrodes composed of pristine Ti3C2Tx MXene flakes, significantly higher capacities are seen after having exposed the flakes to water and air prior to the manufacturing of the electrodes. This is ascribed to a change in the titanium oxidation state at the surfaces of the MXene flakes, resulting in increased concentrations of Ti(II), Ti(III), and Ti(IV) in the Tx-Ti-C surface species. The significant irreversible capacity seen in the first cycles is mainly attributed to the presence of residual water in the Ti3C2Tx electrodes. As the capacities of Ti3C2Tx MXene negative electrodes depend on the concentration of Ti(II), Ti(III), and Ti(IV) in the Tx-Ti-C surface species and the water content, different capacities can be expected when using different manufacturing, pretreatment, and drying procedures.
  •  
8.
  • Kotronia, Antonia, et al. (författare)
  • Nature of the Cathode–Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:3, s. 3867-3880
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-ion batteries (DIBs) generally operate beyond 4.7 V vs Li+/Li0 and rely on the intercalation of both cations and anions in graphite electrodes. Major challenges facing the development of DIBs are linked to electrolyte decomposition at the cathode–electrolyte interface (CEI), graphite exfoliation, and corrosion of Al current collectors. In this work, X-ray photoelectron spectroscopy (XPS) is employed to gain a broad understanding of the nature and dynamics of the CEI built on anion-intercalated graphite cycled both in highly concentrated electrolytes (HCEs) of common lithium salts (LiPF6, LiFSI, and LiTFSI) in carbonate solvents and in a typical ionic liquid. Though Al metal current collectors were adequately stable in all HCEs, the Coulombic efficiency was substantially higher for HCEs based on LiFSI and LiTFSI salts. Specific capacities ranging from 80 to 100 mAh g–1 were achieved with a Coulombic efficiency above 90% over extended cycling, but cells with LiPF6-based electrolytes were characterized by <70% Coulombic efficiency and specific capacities of merely ca. 60 mAh g–1. The poor performance in LiPF6-containing electrolytes is indicative of the continual buildup of decomposition products at the interface due to oxidation, forming a thick interfacial layer rich in LixPFy, POxFy, LixPOyFz, and organic carbonates as evidenced by XPS. In contrast, insights from XPS analyses suggested that anion intercalation and deintercalation processes in the range from 3 to 5.1 V give rise to scant or extremely thin surface layers on graphite electrodes cycled in LiFSI- and LiTFSI-containing HCEs, even allowing for probing anions intercalated in the near-surface bulk. In addition, ex situ Raman, SEM and TEM characterizations revealed the presence of a thick coating on graphite particles cycled in LiPF6-based electrolytes regardless of salt concentration, while hardly any surface film was observed in the case of concentrated LiFSI and LiTFSI electrolytes.
  •  
9.
  •  
10.
  • Källquist, Ida (författare)
  • Combining Electrochemistry and Photoelectron Spectroscopy for the Study of Li-ion Batteries
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis photoelectron spectroscopy (PES) is combined with electrochemistry to investigate the electrochemical processes that occur at the electrode/electrolyte interfaces in lithium-ion batteries (LIBs). LIB systems are studied by the use of both ex situ PES, where electrodes are electrochemically pre-cycled and subsequently measured by PES, and operando PES, where electrodes are cycled during PES measurements. Ex situ PES is used to determine the main degradation mechanisms of a novel high capacity material, Li2VO2F. The capacity fade seen for Li2VO2F. is found to be related to an irreversible oxidation of the active material at high voltages, and a continuous surface layer formation at low voltages. To decrease the capacity fading three strategies for optimizing the interface are investigated. The results show that a surface coating of AlF3 most efficiently can mitigate electrolyte reduction, while boron containing electrolyte additives and transition metal substitution more successfully limit the oxidation of the active material. A large part of the work performed in this thesis has been devoted towards developing a methodology suitable for conducting operando ambient pressure photoelectron spectroscopy (APPES) measurements on LIB systems. A general connection between the theory of PES and electrochemistry is made, where in particular a model suitable for interpreting operando APPES results on solid/liquid interfaces is suggested. The model is further developed for the specific case of LIB interfaces. The results from the operando studies show that the kinetic energy shifts of the liquid electrolyte measured by APPES can be correlated to the electrochemical reactions occurring at the interface. If no charge transfer occurs, the kinetic energy shift is proportional to the applied voltage. During charge transfer the behavior is more complex, and the kinetic energy shifts are related to the change in chemical potential of the working electrode. In summary, this thesis exemplifies how both ex situ and operando PES are highly useful techniques for the study of LIB battery interfaces. The possibilities of both techniques are highlighted, and important considerations for an accurate interpretation of the PES results are also discussed. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (13)
konferensbidrag (2)
rapport (1)
annan publikation (1)
doktorsavhandling (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Edström, Kristina, P ... (19)
Brandell, Daniel, 19 ... (9)
Fichtner, Maximilian (5)
Rensmo, Håkan (4)
Younesi, Reza (4)
visa fler...
Duda, Laurent (3)
Vegge, Tejs (2)
Clark, Simon (2)
Kullgren, Jolla, 197 ... (1)
Hermansson, Kersti, ... (1)
Tai, Cheuk-Wai (1)
Berg, Erik (1)
Ahmadi, Majid (1)
Urpelainen, Samuli (1)
Aktekin, Burak (1)
Valvo, Mario (1)
Zipprich, Wolfgang (1)
Marzano, Fernanda (1)
Massel, Felix (1)
Heuer, Andreas (1)
Siegbahn, Hans (1)
Lee, Ming-Tao (1)
Amici, Julia (1)
Ayerbe, Elixabete (1)
Barboux, Philippe (1)
Berecibar, Maitane (1)
Bodoardo, Silvia (1)
Christensen, Rune (1)
Diehm, Ralf (1)
Dominko, Robert (1)
Grimaud, Alexis (1)
Guillet, Nicolas (1)
Heiries, Vincent (1)
Jabbour, Lara (1)
Kallo, Josef (1)
Latz, Arnulf (1)
Lorrmann, Henning (1)
Lovvik, Ole Martin (1)
Lyonnard, Sandrine (1)
Meeus, Marcel (1)
Perraud, Simon (1)
Placke, Tobias (1)
Punckt, Christian (1)
Raccurt, Olivier (1)
Sheridan, Edel (1)
Tarascon, Jean-Marie (1)
Trapp, Victor (1)
Weil, Marcel (1)
Wenzel, Wolfgang (1)
visa färre...
Lärosäte
Uppsala universitet (19)
Lunds universitet (2)
Stockholms universitet (1)
Linköpings universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy