SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edström Kristina Professor 1958 ) ;pers:(Mindemark Jonas)"

Sökning: WFRF:(Edström Kristina Professor 1958 ) > Mindemark Jonas

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Rassmus, et al. (författare)
  • Micro versus Nano : Impact of Particle Size on the Flow Characteristics of Silicon Anode Slurries
  • 2020
  • Ingår i: ENERGY TECHNOLOGY. - : WILEY-V C H VERLAG GMBH. - 2194-4288 .- 2194-4296. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon is interesting for use as a negative electrode material in Li-ion batteries due to its extremely high gravimetric capacity compared with today's state-of-the-art material, graphite. However, during cycling the Si particles suffer from large volume changes, leading to particle cracking, electrolyte decompositions, and electrode disintegration. Although utilizing nm-sized particles can mitigate some of these issues, it would instead be more cost-effective to incorporate mu m-sized silicon particles in the anode. Herein, it is shown that the size of the Si particles not only influences the electrode cycling properties but also has a decisive impact on the processing characteristics during electrode preparation. In water-based slurries and suspensions containing mu m-Si and nm-Si particles, the smaller particles consistently give higher viscosities and more pronounced viscoelastic properties, particularly at low shear rates. This difference is observed even when the Si particles are present as a minor component in blends with graphite. It is found that the viscosity follows the particle volume fraction divided by the particle radius, suggesting that it is dependent on the surface area concentration of the Si particles.
  •  
2.
  •  
3.
  • Elbouazzaoui, Kenza, et al. (författare)
  • Ionic transport in solid-state composite poly(trimethylene carbonate)-Li6.7Al0.3La3Zr2O12 electrolytes : The interplay between surface chemistry and ceramic particle loading
  • 2023
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 462
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionic transport in solid-state composite electrolytes based on poly(trimethylene carbonate) (PTMC) with LiTFSI salt and garnet-type ion-conducting Li6.7Al0.3-La3Zr2O12 (LLZO) ceramic particles is here investigated for a range of different compositions. Positive effects on ionic conductivity have previously been reported for LLZO incorporated into poly(ethylene oxide) (PEO), but the origin of these effects is unclear since the inclusion of particles also affects polymer crystallinity. PTMC is, in contrast to PEO, a fully amorphous polymer, and therefore here chosen for the design of a more straight-forward composite electrolyte (CPE) system to study ionic transport. With LLZO loadings ranging from 5 to 70 wt%, the CPE with 30 wt% of LLZO exhibits the highest ionic conductivity with a cationic transference number of 0.94 at 60 degrees C. This is significantly higher than for the pristine PTMC polymer electrolyte. Generally, low to moderate LLZO loadings display a gradual increase of the ionic conductivity, transference number and also of the polymer-cation coordination number. The combined contributions of ionic transport along polymer-ceramic interfaces and Lewis acid-base interaction between the LLZO particles and the LiTFSI salt can explain this enhancement. With loadings of LLZO above 50 wt%, a detrimental effect on the ionic conductivity was however observed. This could be explained by agglomeration of ceramic particles, and by a partial coverage of LLZO particles with a Li2CO3 layer. Consequently, inner polymer-particle interfaces become more resistive, and Li+conduction is prevented along interfacial pathways. The presence of Li2CO3 has more detrimental impact at higher LLZO loadings, since inter-particle connectivity will be hampered, and this is vital for efficient ionic transport. This suggests that there is an interplay between the LLZO particle surface chemistry with its loading, which ultimately controls the Li-ion transport.
  •  
4.
  • Hernández, Guiomar, et al. (författare)
  • Elimination of Fluorination : The Influence of Fluorine-Free Electrolytes on the Performance of LiNi1/3Mn1/3Co1/3O2/Silicon-Graphite Li-Ion Battery Cells
  • 2020
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : AMER CHEMICAL SOC. - 2168-0485. ; 8:27, s. 10041-10052
  • Tidskriftsartikel (refereegranskat)abstract
    • In the quest for environmentally friendly and safe batteries, moving from fluorinated electrolytes that are toxic and release corrosive compounds, such as HF, is a necessary step. Here, the effects of electrolyte fluorination are investigated for full cells combining silicon- graphite composite electrodes with Li-Ni1/3Mn1/3Co1/3O2 (NMC111) cathodes, a viable cell chemistry for a range of potential battery applications, by means of electrochemical testing and postmortem surface analysis. A fluorine-free electrolyte based on lithium bis(oxalato) borate (LiBOB) and vinylene carbonate (VC) is able to provide higher discharge capacity (147 mAh g(NMC)(-1)) and longer cycle life at C/10 (84.4% capacity retention after 200 cycles) than a cell with a highly fluorinated electrolyte containing LiPF6, fluoroethylene carbonate (FEC) and VC. The cell with the fluorine-free electrolyte is able to form a stable solid electrolyte interphase (SEI) layer, has low overpotential, and shows a slow increase in cell resistance that leads to improved electrochemical performance. Although the power capability is limiting the performance of the fluorine-free electrolyte due to higher interfacial resistance, it is still able to provide long cycle life at C/2 and outperforms the highly fluorinated electrolyte at 40 degrees C. X-ray photoelectron spectroscopy (XPS) results showed a F-rich SEI with the highly fluorinated electrolyte, while the fluorine-free electrolyte formed an O-rich SEI. Although their composition is different, the electrochemical results show that both the highly fluorinated and fluorine-free electrolytes are able to stabilize the silicon-based anode and support stable cycling in full cells. While these results demonstrate the possibility to use a nonfluorinated electrolyte in high-energy-density full cells, they also address new challenges toward environmentally friendly and nontoxic electrolytes.
  •  
5.
  •  
6.
  • Hernández, Guiomar, et al. (författare)
  • Non-Fluorinated Electrolytes for Si-based Li-ion Battery Anodes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Although the performance of lithium-ion batteries has been improved to some extent since the initial commercialization,1 cycling stability, safety and sustainability still present some challenges and concerns. In this regard, the battery electrolyte plays an important role. State-of-the-art electrolytes contain the electrolyte salt LiPF6, susceptible to undergo defluorination reactions and form toxic and corrosive compounds, such as HF. Yet, fluorine-containing electrolytes are often considered necessary for enhanced battery performance. On the other hand, replacing LiPF6 with fluorine-free salts would reduce cost, increase safety and decrease toxicity, both in the manufacturing and recycling processes. Among the available fluorine-free salts, lithium bis(oxalato)borate (LiBOB) is a viable candidate due to its enhanced thermal stability.2 Furthermore, additives in the electrolyte are another common source of fluorine, not least fluoroethylene carbonate (FEC) which can form a stable solid electrolyte interface (SEI).3Herein, we compare the cell performance of fluorinated and non-fluorinated electrolytes in NMC/Si-Graphite full cells. Three electrolytes are tested: (1) LP57 (1 M LiPF6 in ethylene carbonate (EC):ethyl methyl carbonate (EMC) 3:7 vol/vol); (2) LP57 with 10 wt% FEC and 2 wt%  vinylene carbonate (VC); and (3) 0.7 M LiBOB in EC:EMC 3:7 vol/vol and 2 wt% VC.The cells containing the conventional electrolyte, LP57, feature a rapid capacity fade and continuous decrease in coulombic efficiency. The cell performance is improved when adding SEI-forming additives to the electrolyte (LP57 with FEC and VC). In addition, stable cycling for over 200 cycles are obtained for both the fluorinated (LP57 with FEC and VC) and non-fluorinated (LiBOB with VC) electrolytes.Characterisation by X-ray photoelectron spectroscopy (XPS) of the anode surface showed higher amounts of carbonate species and a thicker SEI layer with the non-fluorinated electrolyte compared to the fluorinated one.1 J. Electrochem. Soc. 2017, 164, A5019-A5025.2 ChemSusChem 2017, 10, 2431-2448.3 J. Electrochem. Soc. 2014, 161, A1933-A1938.
  •  
7.
  •  
8.
  • Lv, Fei, et al. (författare)
  • Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries
  • 2019
  • Ingår i: Journal of Power Sources. - : Elsevier. - 0378-7753 .- 1873-2755. ; 441
  • Forskningsöversikt (refereegranskat)abstract
    • The safety concerns and the pursuit of high energy density have stimulated the development of high-performance solid-state lithium ion batteries. Therefore, the key component in solid-state lithium batteries, i.e. the solid-state electrolytes, also has attracted tremendous attention due to its non-flammability and good adaptability to high-voltage cathodes/lithium metal anodes. An in-depth understanding of the existing problems of solid-state electrolytes and proposed strategies for addressing these problems is crucial for the efficient design of high-performance solid-state electrolytes. In this review, we systematically summarized the current limitations of composite solid-state electrolytes and efforts to overcome them, and gave some proposals for the future perspectives of solid-state electrolytes with the aim to provide practical guidance for the researchers in this area.
  •  
9.
  • Nkosi, Funeka P., et al. (författare)
  • Garnet-Poly(epsilon-caprolactone-co-trimethylene carbonate) Polymer-in-Ceramic Composite Electrolyte for All-Solid-State Lithium-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:3, s. 2531-2542
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite electrolyte based on a garnet electrolyte (LLZO) and polyester-based co-polymer (80:20 epsilon-caprolactone (CL)-trimethylene carbonate, PCL-PTMC with LiTFSI salt) is prepared. Integrating the merits of both ceramic and co-polymer electrolytes is expected to address the poor ionic conductivity and high interfacial resistance in solid-state lithium-ion batteries. The composite electrolyte with 80 wt % LLZO and 20 wt % polymer (PCL-PTMC and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at 72:28 wt %) exhibited a Li-ion conductivity of 1.31 X 10(-4) S/cm and a transference number (t(Li+)) of 0.84 at 60 degrees C, notably higher than those of the pristine PCL-PTMC electrolyte. The prepared composite electrolyte also exhibited an electrochemical stability of up to 5.4 V vs Li+/Li. The interface between the composite electrolyte and a LiFePO4 (LFP) cathode was also improved by direct incorporation of the polymer electrolyte as a binder in the cathode coating. A Li/composite electrolyte/LFP solid-state cell provided a discharge capacity of ca. 140 mAh/g and suitable cycling stability at 55 degrees C after 40 cycles. This study clearly suggests that this type of amorphous polyester-based polymers can be applied in polymer-in-ceramic composite electrolytes for the realization of advanced all-solid-state lithium-ion batteries.
  •  
10.
  • Nkosi, Funeka P., et al. (författare)
  • Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes
  • 2024
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 7:10, s. 4609-4619
  • Tidskriftsartikel (refereegranskat)abstract
    • Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy