SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edvinsson Lars) ;pers:(Povlsen Gro Klitgaard)"

Sökning: WFRF:(Edvinsson Lars) > Povlsen Gro Klitgaard

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Edvinsson, Lars, et al. (författare)
  • Late cerebral ischaemia after subarachnoid haemorrhage: Is cerebrovascular receptor upregulation the mechanism behind?
  • 2011
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708. ; 203:1, s. 209-224
  • Forskningsöversikt (refereegranskat)abstract
    • Late cerebral ischaemia after subarachnoid haemorrhage (SAH) carries high morbidity and mortality because of reduced cerebral blood flow (CBF) and subsequent cerebral ischaemia. This is associated with upregulation of contractile receptors in cerebral artery smooth muscles via the activation of intracellular signalling. In addition, delayed cerebral ischaemia after SAH is associated with inflammation and disruption of the blood-brain barrier (BBB). This article reviews recent evidence concerning the roles of vasoconstrictor receptor upregulation, inflammation and BBB breakdown in delayed cerebral ischaemia after SAH. In addition, recent studies investigating the role of various intracellular signalling pathways in these processes and the possibilities of targeting signalling components in SAH treatment are discussed. Studies using a rat SAH model have demonstrated that cerebral arteries increase their sensitivity to endogenous agonists such as ET-1 and 5-HT by increasing their smooth muscle expression of receptors for these after SAH. This is associated with reduced CBF and neurological deficits. A number of signal transduction components mediating this receptor upregulation have been identified, including the MEK-ERK1/2 pathway. Inhibition of MEK-ERK1/2 signalling has been shown to prevent cerebrovascular receptor upregulation and normalize CBF and neurological function after SAH in rats. At the same time, in rat SAH, certain cytokines and BBB-regulating proteins are upregulated in cerebral artery smooth muscles and treatment with MEK-ERK1/2 inhibitors prevents the induction of these proteins. Thus, inhibitors of MEK-ERK1/2 signalling exert multimodal beneficial effects in SAH.
  •  
3.
  • Edvinsson, Lars, et al. (författare)
  • Vascular plasticity in cerebrovascular disorders.
  • 2011
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 31, s. 1554-1571
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and microvessels that takes place after different types of stroke. Receptors like the endothelin type B, angiotensin type 1, and 5-hydroxytryptamine type 1B/1D receptors are upregulated in the smooth muscle layer of cerebral arteries after different types of ischemic stroke as well as after subarachnoid hemorrhage, yielding rather dramatic changes in the contractility of the vessels. Some of the signal transduction processes mediating this receptor upregulation have been elucidated. In particular the extracellular regulated kinase 1/2 pathway, which is activated early in the process, has proven to be a promising therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke.Journal of Cerebral Blood Flow & Metabolism advance online publication, 11 May 2011; doi:10.1038/jcbfm.2011.70.
  •  
4.
  • Johansson, Sara Ellinor, et al. (författare)
  • Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby improve functional outcome after global cerebral ischemia. Incomplete global cerebral ischemia was induced in Wistar rats and the time-course of enhanced contractile responses and the effect of U0126 in cerebral arteries were studied by wire myography and the neuronal cell death by TUNEL. The expression of ETB and 5-HT1B receptors was determined by immunofluorescence.
  •  
5.
  • Johansson, Sara, et al. (författare)
  • Expressional Changes in Cerebrovascular Receptors after Experimental Transient Forebrain Ischemia
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Global ischemic stroke is one of the most prominent consequences of cardiac arrest, since the diminished blood flow to the brain results in cell damage and sometimes permanently impaired neurological function. The post-arrest period is often characterised by cerebral hypoperfusion due to subacute hemodynamic disturbances, the pathophysiology of which are poorly understood. In two other types of stroke, focal ischemic stroke and subarachnoid hemorrhage, it has earlier been demonstrated that the expression of certain vasoconstrictor receptors is increased in cerebral arteries several days after the insult, a phenomenon that leads to increased contraction of cerebral arteries, reduced perfusion of the affected area and worsened ischemic damage. Based on these findings, the aim of the present study was to investigate if transient global cerebral ischemia is associated with upregulation of vasoconstrictive endothelin and 5-hydroxytryptamine receptors in cerebral arteries. Experimental transient forebrain ischemia of varying durations was induced in male wistar rats, followed by reperfusion for 48 hours. Neurological function was assessed daily by three different tests and cerebrovascular expression and contractile function of endothelin and 5-hydroxytryptamine receptors were evaluated by wire myography, immunohistochemistry and western blotting. Results: Transient forebrain ischemia induced neurological deficits as well as functional upregulation of vasoconstrictive ETB and 5-HT1B receptors in cerebral arteries supplying mid-and forebrain regions. No receptor upregulation was seen in arteries supplying the hindbrain. Immunohistochemical stainings and western blotting demonstrated expressional upregulation of these receptor subtypes in the mid-and forebrain arteries and confirmed that the receptors were located in the smooth muscle layer of the cerebral arteries. Conclusions: This study reveals a new pathophysiological aspect of global ischemic stroke, namely expressional upregulation of vasoconstrictor receptors in cerebral arteries two days after the insult, which might contribute to cerebral hypoperfusion and delayed neuronal damage after cardiac arrest.
  •  
6.
  • Maddahi, Aida, et al. (författare)
  • Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway
  • 2012
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. It is suggested that the associated inflammation is mediated through activation of the mitogen-activated protein kinase (MAPK) pathway which plays a crucial role in the pathogenesis of delayed cerebral ischemia after SAH. The aim of this study was first to investigate the timecourse of altered expression of proinflammatory cytokines and matrix metalloproteinase in the cerebral arteries walls following SAH. Secondly, we investigated whether administration of a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, U0126, given at 6 h after SAH prevents activation of the MEK/extracellular signal-regulated kinase 1/2 pathway and the upregulation of cerebrovascular inflammatory mediators and improves neurological function. Methods: SAH was induced in rats by injection of 250 mu l of autologous blood into basal cisterns. U0126 was given intracisternally using two treatment regimens: (A) treatments at 6, 12, 24 and 36 h after SAH and experiments terminated at 48 h after SAH, or (B) treatments at 6, 12, and 24 h after SAH and terminated at 72 h after SAH. Cerebral arteries were harvested and interleukin (IL)-6, IL-1 beta, tumor necrosis factor alpha (TNF)alpha, matrix metalloproteinase (MMP)-9 and phosphorylated ERK1/2 (pERK1/2) levels investigated by immunohistochemistry. Early activation of pERK1/2 was measured by western blot. Functional neurological outcome after SAH was also analyzed. Results: Expression levels of IL-1 beta, IL-6, MMP-9 and pERK1/2 proteins were elevated over time with an early increase at around 6 h and a late peak at 48 to 72 h post-SAH in cerebral arteries. Enhanced expression of TNF alpha in cerebral arteries started at 24 h and increased until 96 h. In addition, SAH induced sensorimotor and spontaneous behavior deficits in the animals. Treatment with U0126 starting at 6 h after SAH prevented activation of MEK-ERK1/2 signaling. Further, U0126 significantly decreased the upregulation of inflammation proteins at 48 and 72 h following SAH and improved neurological function. We found no differences between treatment regimens A and B. Conclusions: These results show that SAH induces early activation of the MEK-ERK1/2 pathway in cerebral artery walls, which is associated with upregulation of proinflammatory cytokines and MMP-9. Inhibition of the MEK-ERK1/2 pathway by U0126 starting at 6 h post-SAH prevented upregulation of cytokines and MMP-9 in cerebral vessels, and improved neurological outcome.
  •  
7.
  • Parker, Benjamin L., et al. (författare)
  • Signal transduction in cerebral arteries after subarachnoid hemorrhage-a phosphoproteomic approach
  • 2013
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016 .- 0271-678X. ; 33:8, s. 1259-1269
  • Tidskriftsartikel (refereegranskat)abstract
    • After subarachnoid hemorrhage (SAH), pathologic changes in cerebral arteries contribute to delayed cerebral ischemia and poor outcome. We hypothesize such changes are triggered by early intracellular signals, targeting of which may prevent SAH-induced vasculopathy. We performed an unbiased quantitative analysis of early SAH-induced phosphorylations in cerebral arteries and evaluated identified signaling components as targets for prevention of delayed vasculopathy and ischemia. Labeled phosphopeptides from rat cerebral arteries were quantified by high-resolution tandem mass spectrometry. Selected SAH-induced phosphorylations were validated by immunoblotting and monitored over a 24-hour time course post SAH. Moreover, inhibition of key phosphoproteins was performed. Major SAH-induced phosphorylations were observed on focal adhesion complexes, extracellular regulated kinase 1/2 (ERK1/2), calcium calmodulin-dependent kinase II, signal transducer and activator of transcription (STAT3) and c-Jun, the latter two downstream of ERK1/2. Inhibition of ERK1/2 6-hour post SAH prevented increases in cerebrovascular constrictor receptors, matrix metalloprotease-9, wall thickness, and improved neurologic outcome. STAT3 inhibition partially mimicked these effects. The study shows that quantitative mass spectrometry is a strong approach to study in vivo vascular signaling. Moreover, it shows that targeting of ERK1/2 prevents delayed pathologic changes in cerebral arteries and improves outcome, and identifies SAH-induced signaling components downstream and upstream of ERK1/2.
  •  
8.
  • Povlsen, Gro Klitgaard, et al. (författare)
  • In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries
  • 2012
  • Ingår i: Experimental Brain Research. - : Springer Science and Business Media LLC. - 0014-4819 .- 1432-1106. ; 219:4, s. 507-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral arteries subjected to different types of experimental stroke upregulate their expression of certain G-protein-coupled vasoconstrictor receptors, a phenomenon that worsens the ischemic brain damage. Upregulation of contractile endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT1B) receptors has been demonstrated after subarachnoid hemorrhage and global ischemic stroke, but the situation is less clear after focal ischemic stroke. Changes in smooth muscle calcium handling have been implicated in different vascular diseases but have not hitherto been investigated in cerebral arteries after stroke. Here, we evaluate changes of ETB and 5-HT1B receptors, intracellular calcium levels, and calcium channel expression in rat middle cerebral artery (MCA) after focal cerebral ischemia and in vitro organ culture, a proposed model of vasoconstrictor receptor changes after stroke. Rats were subjected to 2 h MCA occlusion followed by reperfusion for 1 or 24 h. Alternatively, MCAs from na < ve rats were cultured for 1 or 24 h. ETB and 5-HT1B receptor-mediated contractions were evaluated by wire myography. Receptor and channel expressions were measured by real-time PCR and immunohistochemistry. Intracellular calcium was measured by FURA-2. Expression and contractile functions of ETB and 5-HT1B receptors were strongly upregulated and slightly downregulated, respectively, 24 h after experimental stroke or organ culture. ETB receptor-mediated contraction was mediated by calcium from intracellular and extracellular sources, whereas 5-HT1B receptor-mediated contraction was solely dependent on extracellular calcium. Organ culture and stroke increased basal intracellular calcium levels in MCA smooth muscle cells and decreased the expression of inositol triphosphate receptor and transient receptor potential canonical calcium channels, but not voltage-operated calcium channels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy