SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Edwards R) ;lar1:(ltu)"

Search: WFRF:(Edwards R) > Luleå University of Technology

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cockell, Charles S., et al. (author)
  • Subsurface scientific exploration of extraterrestrial environments (MINAR 5) : analogue science, technology and education in the Boulby Mine, UK
  • 2019
  • In: International Journal of Astrobiology. - : Cambridges Institutes Press. - 1473-5504 .- 1475-3006. ; 18:2, s. 157-182
  • Journal article (peer-reviewed)abstract
    • The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation.
  •  
2.
  •  
3.
  • Clayton, R.E, et al. (author)
  • Fe isotope fractionation during the precipitation of ferrihydrite and transformation of ferrihydrite to goethite
  • 2005
  • In: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 69:5, s. 667-676
  • Journal article (peer-reviewed)abstract
    • Ferrihydrite and goethite are amongst the most important substrates for the sorption of contaminants in soil and other environmental media. Isotopic studies of the transition elements, particularly those that exhibit more than one oxidation state and show pH- and/or redox-sensitive behaviour at low temperatures, have been shown to be potentially useful present-day and past proxies for redox (or palaeoredox) conditions. We have made preliminary investigations of Fe isotope fractionation that take place during the formation of FeIII (oxy)hydroxides (FeIIIox) from an aqueous FeIII(NO3)3 solution (FeIIIaq) under laboratory conditions. We have attempted to keep the chemical system simple by excluding 'vital effects' and major changes in redox through the maintenance of abiotic conditions and use of FeIIIaq. Isotopic measurements (56Fe/54Fe, 57Fe/54Fe) of the FeIII(NO3)3 stock solution, the original ferrihydrite and the mixed ferrihydrite/goethite-supernatant FeIIIaq 'pairs' were carried out using a double focusing multicollector inductively coupled plasma mass spectrometer. The results reveal an apparent systematic variation indicating larger ΔFeIIIaq-FeIIIox with decrease in the ferrihydrite:goethite ratio, which reflects the time allowed for isotopic exchange. These values range from virtually zero (0.03‰) after 24 h to 0.30‰ after 70 h. In each FeIIIox-FeIIIaq 'pair' the lighter Fe isotope is partitioned into the FeIIIox, leaving the FeIIIaq isotopically heavier. The observed fractionation reflects isotopic exchange of Fe between the FeIIIox and FeIIIaq upon at least a two step transition of ferrihydrite to goethite.
  •  
4.
  • López-Puertas, M., et al. (author)
  • Non-local thermodynamic equilibrium limb radiances for the mipas instrument on Envisat-1
  • 1998
  • In: Journal of Quantitative Spectroscopy and Radiative Transfer. - 0022-4073 .- 1879-1352. ; 59:3-5, s. 377-403
  • Journal article (peer-reviewed)abstract
    • An evaluation of the effects that the assumption of local thermodynamic equilibrium (LTE) has on the retrieval of pressure, temperature and the five primary target gases (O3, H2O, CH4, N2O, and HNO3) from spectra to be taken by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat-1 platform has been conducted. For doing so, non-LTE and LTE limb radiances in the spectral range of 680–2275 cm−1 (4.15–14.6 μm) with a resolution of 0.05 cm−1 at tangent heights from 10 to 70 km have been computed. These calculations included the most updated non-LTE populations of a large number of vibrational levels of the CO2, O3, H2O, CH4, N2O and HNO3 molecules which cause the most prominent atmospheric infrared emissions. A discussion of the most important non-LTE effects on the limb radiances as well as on the retrievals of pressure-temperature and volume mixing ratios of O3, H2O, CH4, N2O, and HNO3 is presented, together with the most important non-LTE issues that could be studied with the future coming of MIPAS data.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view