SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eede P.) "

Sökning: WFRF:(Eede P.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
2.
  • Ashbolt, N. J., et al. (författare)
  • Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance
  • 2013
  • Ingår i: Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 121:9, s. 993-1001
  • Forskningsöversikt (refereegranskat)abstract
    • BACKGROUND: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. OBJECTIVE: We examined possible approaches and sought to identify research needs to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of anti-biotic treatment caused by antibiotic-resistant pathogens. METHODS: The authors participated in a workshop held 4-8 March 2012 in Quebec, Canada, to define the scope and objectives of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development "hot spots," exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. DISCUSSION: Various novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b) identifying and describing rates of horizontal gene transfer (HGT) in the relevant environmental " hot spot" compartments; and c) modifying traditional dose-response approaches to address doses of ARB for various health outcomes and pathways. CONCLUSIONS: We propose that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB. Because of limited available data, a multi-criteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers.
  •  
3.
  • Kichev, A., et al. (författare)
  • Implicating Receptor Activator of NF-kappa B (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli
  • 2017
  • Ingår i: Developmental Neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 39:1-4, s. 192-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-kappa B (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the pro-inflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I: C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR) 3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I: C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with primary mouse microglia. Using recently developed CRISPR/Cas9 technology, we generated a BV2 cell line lacking RANK (RANK(-/-) BV2). We showed that most effects of RANKL pretreatment were abolished, thereby proving the specificity of this effect. Taken together, these findings suggest that RANK signalling is important for modulating the inflammatory activation of microglial cells to a moderate level, and that RANK attenuates TLR3/TLR4 signalling. (C) 2017 The Author(s) Published by S. Karger AG, Basel
  •  
4.
  • Angers-Loustau, A., et al. (författare)
  • The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies
  • 2018
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 2046-1402. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
  •  
5.
  • Ringborg, Ulrik, et al. (författare)
  • The Porto European Cancer Research Summit 2021
  • 2021
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 15:10, s. 2507-2543
  • Tidskriftsartikel (refereegranskat)abstract
    • Key stakeholders from the cancer research continuum met in May 2021 at the European Cancer Research Summit in Porto to discuss priorities and specific action points required for the successful implementation of the European Cancer Mission and Europe's Beating Cancer Plan (EBCP). Speakers presented a unified view about the need to establish high-quality, networked infrastructures to decrease cancer incidence, increase the cure rate, improve patient's survival and quality of life, and deal with research and care inequalities across the European Union (EU). These infrastructures, featuring Comprehensive Cancer Centres (CCCs) as key components, will integrate care, prevention and research across the entire cancer continuum to support the development of personalized/precision cancer medicine in Europe. The three pillars of the recommended European infrastructures – namely translational research, clinical/prevention trials and outcomes research – were pondered at length. Speakers addressing the future needs of translational research focused on the prospects of multiomics assisted preclinical research, progress in Molecular and Digital Pathology, immunotherapy, liquid biopsy and science data. The clinical/prevention trial session presented the requirements for next-generation, multicentric trials entailing unified strategies for patient stratification, imaging, and biospecimen acquisition and storage. The third session highlighted the need for establishing outcomes research infrastructures to cover primary prevention, early detection, clinical effectiveness of innovations, health-related quality-of-life assessment, survivorship research and health economics. An important outcome of the Summit was the presentation of the Porto Declaration, which called for a collective and committed action throughout Europe to develop the cancer research infrastructures indispensable for fostering innovation and decreasing inequalities within and between member states. Moreover, the Summit guidelines will assist decision making in the context of a unique EU-wide cancer initiative that, if expertly implemented, will decrease the cancer death toll and improve the quality of life of those confronted with cancer, and this is carried out at an affordable cost.
  •  
6.
  • Topp, Edward, et al. (författare)
  • Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing.
  • 2018
  • Ingår i: FEMS microbiology ecology. - : Oxford University Press (OUP). - 1574-6941. ; 94:3
  • Forskningsöversikt (refereegranskat)abstract
    • A roundtable discussion held at the fourth International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR4) considered key issues concerning the impact on the environment of antibiotic use in agriculture and aquaculture, and emissions from antibiotic manufacturing. The critical control points for reducing emissions of antibiotics from agriculture are antibiotic stewardship and the pre-treatment of manure and sludge to abate antibiotic-resistant bacteria. Antibiotics are sometimes added to fish and shellfish production sites via the feed, representing a direct route of contamination of the aquatic environment. Vaccination reduces the need for antibiotic use in high value (e.g. salmon) production systems. Consumer and regulatory pressure will over time contribute to reducing the emission of very high concentrations of antibiotics from manufacturing. Research priorities include the development of technologies, practices and incentives that will allow effective reduction in antibiotic use, together with evidence-based standards for antibiotic residues in effluents. All relevant stakeholders need to be aware of the threat of antimicrobial resistance and apply best practice in agriculture, aquaculture and pharmaceutical manufacturing in order to mitigate antibiotic resistance development. Research and policy development on antimicrobial resistance mitigation must be cognizant of the varied challenges facing high and low income countries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy