SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrencrona Hans) ;lar1:(gu)"

Sökning: WFRF:(Ehrencrona Hans) > Göteborgs universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arver, Brita, et al. (författare)
  • Bilateral Prophylactic Mastectomy in Swedish Women at High Risk of Breast Cancer: A National Survey.
  • 2011
  • Ingår i: Annals of surgery. - : Lippincott Williams and Wilkins; 1999. - 1528-1140 .- 0003-4932. ; 253:6, s. 1147-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/OBJECTIVE:: This study attempted a national inventory of all bilateral prophylactic mastectomies performed in Sweden between 1995 and 2005 in high-risk women without a previous breast malignancy. The primary aim was to investigate the breast cancer incidence after surgery. Secondary aims were to describe the preoperative risk assessment, operation techniques, complications, histopathological findings, and regional differences. METHODS:: Geneticists, oncologists and surgeons performing prophylactic breast surgery were asked to identify all women eligible for inclusion in their region. The medical records were reviewed in each region and the data were analyzed centrally. The BOADICEA risk assessment model was used to calculate the number of expected/prevented breast cancers during the follow-up period. RESULTS:: A total of 223 women operated on in 8 hospitals were identified. During a mean follow-up of 6.6 years, no primary breast cancer was observed compared with 12 expected cases. However, 1 woman succumbed 9 years post mastectomy to widespread adenocarcinoma of uncertain origin. Median age at operation was 40 years. A total of 58% were BRCA1/2 mutation carriers. All but 3 women underwent breast reconstruction, 208 with implants and 12 with autologous tissue. Four small, unifocal, invasive cancers and 4 ductal carcinoma in situ were found in the mastectomy specimens. The incidence of nonbreast related complications was low (3%). Implant loss due to infection/necrosis occurred in 21 women (10%) but a majority received a new implant later. In total, 64% of the women underwent at least 1unanticipated secondary operation. CONCLUSIONS:: Bilateral prophylactic mastectomy is safe and efficacious in reducing future breast cancer in asymptomatic women at high risk. Unanticipated reoperations are common. Given the small number of patients centralization seems justified.
  •  
2.
  • Staffas, Anna, 1982, et al. (författare)
  • Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia.
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 118:22, s. 5905-5913
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutation status of the FLT3, NPM1, CEBPA, and WT1 genes and gene expression levels of ERG, MN1, BAALC, FLT3, and WT1 have been identified as possible prognostic markers in acute myeloid leukemia (AML). We have performed a thorough prognostic evaluation of these genetic markers in pediatric AML patients enrolled in the NOPHO 1993 or NOPHO 2004 protocols. Mutation status and expression levels were analyzed in 185 and 149 patients respectively. Presence of FLT3-ITD was associated with significantly inferior event-free survival (EFS), whereas presence of an NPM1 mutation in the absence of FLT3-ITD correlated with significantly improved EFS. Furthermore, high levels of ERG and BAALC transcripts were associated with inferior EFS. No significant correlation with survival was seen for mutations in CEBPA and WT1 or with gene expression levels of MN1, FLT3, and WT1. In multivariate analysis, the presence of FLT3-ITD and high BAALC expression were identified as independent prognostic markers of inferior EFS. We conclude that analysis of the mutational status of FLT3 and NPM1 at diagnosis is important for prognostic stratification of pediatric AML patients and that determination of the BAALC gene expression level can add valuable information.
  •  
3.
  •  
4.
  • Andersson, Andreas, et al. (författare)
  • Public support for healthcare-mediated disclosure of hereditary cancer risk information: Results from a population-based survey in Sweden
  • 2020
  • Ingår i: Hereditary Cancer in Clinical Practice. - : Springer Science and Business Media LLC. - 1731-2302 .- 1897-4287. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Targeted surveillance of at-risk individuals in families with increased risk of hereditary cancer is an effective prevention strategy if relatives are identified, informed and enrolled in screening programs. Despite the potential benefits, many eligible at-risk relatives remain uninformed of their cancer risk. This study describes the general public's opinion on disclosure of hereditary colorectal cancer (CRC) risk information, as well as preferences on the source and the mode of information. Methods A random sample of the general public was assessed through a Swedish citizen web-panel. Respondents were presented with scenarios of being an at-risk relative in a family that had an estimated increased hereditary risk of CRC; either 10% (moderate) or 70% (high) lifetime risk. A colonoscopy was presented as a preventive measure. Results were analysed to identify significant differences between groups using the Pearson's chi-square (chi(2)) test. Results Of 1800 invited participants, 977 completed the survey (54%). In the moderate and high-risk scenarios, 89.2 and 90.6% respectively, would like to receive information about a potential hereditary risk of CRC (chi 2,p = .755). The desire to be informed was higher among women (91.5%) than men (87.0%, chi 2,p = .044). No significant differences were found when comparing different age groups, educational levels, place of residence and having children or not. The preferred source of risk information was a healthcare professional in both moderate and high-risk scenarios (80.1 and 75.5%). However, 18.1 and 20.1% respectively would prefer to be informed by a family member. Assuming that healthcare professionals disclosed the information, the favoured mode of information was letter and phone (38.4 and 33.2%). Conclusions In this study a majority of respondents wanted to be informed about a potential hereditary risk of CRC and preferred healthcare professionals to communicate this information. The two presented levels of CRC lifetime risk did not significantly affect the interest in being informed. Our data offer insights into the needs and preferences of the Swedish population, providing a rationale for developing complementary healthcare-assisted communication pathways to realise the full potential of targeted prevention of hereditary CRC.
  •  
5.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
6.
  • Engel, C., et al. (författare)
  • Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2859-2868
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genes caspase-8 (CASP8) and caspase-10 (CASP10) functionally cooperate and play a key role in the initiation of apoptosis. Suppression of apoptosis is one of the major mechanisms underlying the origin and progression of cancer. Previous case-control studies have indicated that the polymorphisms CASP8 D302H and CASP10 V410I are associated with a reduced risk of breast cancer in the general population.Methods: To evaluate whether the CASP8 D302H (CASP10 V410I) polymorphisms modify breast or ovarian cancer risk in BRCA1 and BRCA2 mutation carriers, we analyzed 7,353 (7,227) subjects of white European origin provided by 19 (18) study groups that participate in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A weighted cohort approach was used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI).Results: The minor allele of CASP8 D302H was significantly associated with a reduced risk of breast cancer (per-allele HR, 0.85; 95% CI, 0.76-0.97; Ptrend = 0.011) and ovarian cancer (per-allele HR, 0.69; 95% CI, 0.53-0.89; Ptrend = 0.004) for BRCA1 but not for BRCA2 mutation carriers. The CASP10 V410I polymorphism was not associated with breast or ovarian cancer risk for BRCA1 or BRCA2 mutation carriers.Conclusions: CASP8 D302H decreases breast and ovarian cancer risk for BRCA1 mutation carriers but not for BRCA2 mutation carriers.Impact: The combined application of these and other recently identified genetic riskmodifiers could in the future allow better individual risk calculation and could aid in the individualized counseling and decision making with respect to preventive options in BRCA1 mutation carriers.
  •  
7.
  •  
8.
  • Hawranek, Carolina, 1982-, et al. (författare)
  • Direct letters to relatives at risk of hereditary cancer-study protocol for a multi-center randomized controlled trial of healthcare-assisted versus family-mediated risk disclosure at Swedish cancer genetics clinics (DIRECT-study)
  • 2023
  • Ingår i: TRIALS. - : BioMed Central (BMC). - 1745-6215. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The results of germline genetic testing for hereditary cancer are of importance not only to the patients under investigation but also to their genetic at-risk relatives. Standard care is to encourage the proband (first family member under investigation) to pass on this risk information to the relatives. Previous research suggests that with family-mediated disclosure, only about a third of at-risk relatives contact health care to receive genetic counselling. In some studies, complementing family-mediated risk disclosure with healthcare-assisted risk disclosure almost doubles the uptake of genetic counselling in at-risk relatives. In this study, we evaluate healthcare-assisted direct letters to relatives at risk of hereditary cancer syndromes in a randomized controlled trial.MethodsProbands are recruited from Swedish outpatient cancer genetics clinics to this two-arm randomized controlled trial. The study recruits probands with either a pathogenic variant in a cancer susceptibility gene (BRCA1, BRCA2, PALB2, MLH1, MSH2, MSH6, PMS2) or probands with familial breast and colorectal cancer based on clinical and pedigree criteria. In both arms, probands receive standard care, i.e., are encouraged and supported to pass on information to relatives. In the intervention arm, the proband is also offered to have direct letters sent to the at-risk relatives. The primary outcome measure is the proportion of at-risk relatives contacting a Swedish cancer genetics clinic within 12 months of the proband receiving the test results.DiscussionThis paper describes the protocol of a randomized controlled clinical trial evaluating a healthcare-assisted approach to risk disclosure by offering the probands to send direct letters to their at-risk relatives. The results of this study should be informative in the future development of risk disclosure practices in cancer genetics clinics.
  •  
9.
  • Kanduri, Meena, 1974, et al. (författare)
  • Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles.
  • 2012
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 7:12, s. 1435-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic lymphocytic leukemia (CLL) can be divided into prognostic subgroups based on the IGHV gene mutational status, and is further characterized by multiple subsets of cases with quasi-identical or stereotyped B cell receptors that also share clinical and biological features. We recently reported differential DNA methylation profiles in IGHV-mutated and IGHV-unmutated CLL subgroups. For the first time, we here explore the global methylation profiles of stereotyped subsets with different prognosis, by applying high-resolution methylation arrays on CLL samples from three major stereotyped subsets: the poor-prognostic subsets #1 (n = 15) and #2 (n = 9) and the favorable-prognostic subset #4 (n = 15). Overall, the three subsets exhibited significantly different methylation profiles, which only partially overlapped with those observed in our previous study according to IGHV gene mutational status. Specifically, gene ontology analysis of the differentially methylated genes revealed a clear enrichment of genes involved in immune response, such as B cell activation (e.g., CD80, CD86 and IL10), with higher methylation levels in subset #1 than subsets #2 and #4. Accordingly, higher expression of the co-stimulatory molecules CD80 and CD86 was demonstrated in subset #4 vs. subset #1, pointing to a key role for these molecules in the crosstalk of CLL subset #4 cells with the microenvironment. In summary, investigation of three prototypic, stereotyped CLL subsets revealed distinct DNA methylation profiles for each subset, which suggests subset-biased patterns of transcriptional control and highlights a key role for epigenetics during leukemogenesis.
  •  
10.
  • Karrman, Kristina, et al. (författare)
  • Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome.
  • 2009
  • Ingår i: Genes, chromosomes & cancer. - : Wiley. - 1098-2264 .- 1045-2257. ; 48:9, s. 795-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical characteristics and cytogenetic aberrations were ascertained and reviewed in a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias (T-ALLs) diagnosed between 1992 and 2006 in the Nordic countries. Informative karyotypic results were obtained in 249 (87%) cases, of which 119 (48%) were cytogenetically abnormal. Most (62%) of the aberrant T-ALLs were pseudodiploid. Structural changes were more common than numerical ones; 86% displayed at least one structural abnormality and 41% at least one numerical anomaly. The most frequent abnormalities were T-cell receptor (TCR) gene rearrangements (20%) [TCR;11p13 (10%), TCR;10q24 (3%), TCR;other (8%)], del(9p) (17%), +8 (14%), del(6q) (12%), and 11q23 rearrangements (6%). The TCR;other group comprised the rare rearrangements t(X;14)(p11;q11), t(X;7)(q22;q34), t(1;14)(p32;q11), ins(14;5)(q11;q?q?), inv(7)(p15q34), t(8;14)(q24;q11), t(7;11)(q34;p15), and t(12;14)(p13;q11). The clinical characteristics of this Nordic patient cohort agreed well with previous larger series, with a median age of 9.0 years, male predominance (male/female ratio 3.1), median white blood cell (WBC) count of 66.5 x 10(9)/l, and a high incidence of mediastinal mass and central nervous system involvement (59% and 9.5%, respectively). These features did not differ significantly among the various genetic subgroups. 5-year event-free survival (EFS) and overall survival for all patients were 0.61 (+/-0.03) and 0.67 (+/-0.03), respectively. In a multivariate analysis, two factors affected negatively the EFS, namely a WBC count of > or =200 x 10(9)/l (P < 0.001) and the presence of rare TCR rearrangements (P = 0.001). In conclusion, in this large series of childhood T-ALLs from the Nordic countries, the cytogenetic findings were not associated with risk of therapy failure with the exception of the TCR;other group. However, further prospective and collaborative investigations of this genetically heterogeneous entity are needed to confirm these results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Ehrencrona, Hans (13)
Karlsson, Per, 1963 (4)
Kanduri, Meena, 1974 (4)
Palmqvist, Lars, 196 ... (4)
Forestier, Erik (3)
Rosenquist, Richard (3)
visa fler...
Hovland, Randi (3)
Öfverholm, Anna (3)
Rosén, Anna, 1975- (3)
Chen, X. (2)
Friedman, E. (2)
Benitez, J. (2)
Abrahamsson, Jonas, ... (2)
Zeller, Bernward (2)
Hasle, Henrik (2)
Jonsson, Olafur G. (2)
Jahnukainen, Kirsi (2)
Palle, Josefine (2)
Hamann, U (2)
Simard, J (2)
Nevanlinna, H (2)
Chenevix-Trench, G (2)
Meindl, A (2)
Beesley, J (2)
Tham, E. (2)
Numan Hellquist, Bar ... (2)
Peock, S (2)
Loman, Niklas (2)
Spurdle, Amanda B. (2)
Antoniou, A C (2)
Evans, D G (2)
Easton, D F (2)
McGuffog, L. (2)
Sinilnikova, O. M. (2)
Couch, F. J. (2)
Nordling, Margareta, ... (2)
Szabo, C. I. (2)
Mai, P. L. (2)
Greene, M. H. (2)
Andrulis, I. L. (2)
Kaufman, B. (2)
Laitman, Y. (2)
Osorio, A. (2)
Van Der Luijt, R. B. (2)
Cook, M. (2)
Oliver, C. (2)
Frost, D. (2)
Godwin, A. K. (2)
Stoppa-Lyonnet, D. (2)
Bergman, Annika (2)
visa färre...
Lärosäte
Lunds universitet (12)
Uppsala universitet (11)
Karolinska Institutet (9)
Umeå universitet (8)
Linköpings universitet (3)
visa fler...
Jönköping University (2)
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy