SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eisen Michael B.) ;lar1:(uu)"

Sökning: WFRF:(Eisen Michael B.) > Uppsala universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
2.
  • Murray, Alison E., et al. (författare)
  • Roadmap for naming uncultivated Archaea and Bacteria
  • 2020
  • Ingår i: Nature Microbiology. - : NATURE PUBLISHING GROUP. - 2058-5276. ; 5:8, s. 987-994
  • Tidskriftsartikel (refereegranskat)abstract
    • The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity. In this Consensus Statement, the authors discuss the issue of naming uncultivated prokaryotic microorganisms, which currently do not have a formal nomenclature system due to a lack of type material or cultured representatives, and propose two recommendations including the recognition of DNA sequences as type material.
  •  
3.
  • Rands, Chris M., et al. (författare)
  • Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence
  • 2013
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 14, s. 95-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin's (Galapagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galapagos archipelago took place in the last 2-3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results: 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin's finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions: These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin's finches.
  •  
4.
  •  
5.
  •  
6.
  • Rübel, Oliver, et al. (författare)
  • Integrating data clustering and visualization for the analysis of 3D gene expression data
  • 2010
  • Ingår i: IEEE/ACM Transactions on Computational Biology & Bioinformatics. - 1545-5963 .- 1557-9964. ; 7:1, s. 64-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex data sets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss 1) the integration of data clustering and visualization into one framework, 2) the application of data clustering to 3D gene expression data, 3) the evaluation of the number of clusters k in the context of 3D gene expression clustering, and 4) the improvement of overall analysis quality via dedicated postprocessing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.
  •  
7.
  • Scelo, Ghislaine, et al. (författare)
  • Genome-wide association study identifies multiple risk loci for renal cell carcinoma.
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10-10), 3p22.1 (rs67311347, P=2.5 × 10-8), 3q26.2 (rs10936602, P=8.8 × 10-9), 8p21.3 (rs2241261, P=5.8 × 10-9), 10q24.33-q25.1 (rs11813268, P=3.9 × 10-8), 11q22.3 (rs74911261, P=2.1 × 10-10) and 14q24.2 (rs4903064, P=2.2 × 10-24). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy