SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekström Tomas J) ;pers:(Bakalkin Georgy)"

Sökning: WFRF:(Ekström Tomas J) > Bakalkin Georgy

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tay, Nicole, et al. (författare)
  • Allele-Specific Methylation of SPDEF : A Novel Moderator of Psychosocial Stress and Substance Abuse
  • 2019
  • Ingår i: American Journal of Psychiatry. - : AMER PSYCHIATRIC PUBLISHING, INC. - 0002-953X .- 1535-7228. ; 176:2, s. 146-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Psychosocial stress is a key risk factor for substance abuse among adolescents. Recently, epigenetic processes such as DNA methylation have emerged as potential mechanisms that could mediate this relationship. The authors conducted a genome-wide methylation analysis to investigate whether differentially methylated regions are associated with psychosocial stress in an adolescent population.Methods: A methylome-wide analysis of differentially methylated regions was used to examine a sample of 1,287 14-year-old adolescents (50.7% of them female) from the European IMAGEN study. The Illumina 450k array was used to assess DNA methylation, pyrosequencing was used for technical replication, and linear regression analyses were used to identify associations with psychosocial stress and substance use (alcohol and tobacco). Findings were replicated by pyrosequencing a test sample of 413 participants from the IMAGEN study.Results: Hypermethylation in the sterile alpha motif/pointed domain containing the ETS transcription factor (SPDEF) gene locus was associated with a greater number of stressful life events in an allele-dependent way. Among individuals with the minor G-allele, SPDEF methylation moderated the association between psychosocial stress and substance abuse. SPDEF methylation interacted with lifetime stress in gray matter volume in the right cuneus, which in turn was associated with the frequency of alcohol and tobacco use. SPDEF was involved in the regulation of trans-genes linked to substance use.Conclusions: Taken together, the study findings describe a novel epigenetic mechanism that helps explain how psychosocial stress exposure influences adolescent substance abuse.
  •  
2.
  • Johansson, Sofia, et al. (författare)
  • Dysregulation of cell death machinery in the prefrontal cortex of human alcoholics
  • 2009
  • Ingår i: International Journal of Neuropsychopharmacology. - 1461-1457 .- 1469-5111. ; 12:1, s. 109-115
  • Tidskriftsartikel (refereegranskat)abstract
    • In human alcoholics, the cell density is decreased in the prefrontal cortex (PFC) and other brain areas. This may be due to persistent activation of cell death pathways. To address this hypothesis, we examined the status of cell death machinery in the dorsolateral PFC in alcoholics. Protein and mRNA expression levels of several key pro- and anti-apoptotic genes were compared in post-mortem samples of 14 male human alcoholics and 14 male controls. The findings do not support the hypothesis. On the contrary, they show that several components of intrinsic apoptotic pathway are decreased in alcoholics. No differences were evident in the motor cortex, which is less damaged in alcoholics and was analysed for comparison. Thus, cell death mechanisms may be dysregulated by inhibition of intrinsic apoptotic pathway in the PFC in human alcoholics. This inhibition may reflect molecular adaptations that counteract alcohol neurotoxicity in cells that survive after many years of alcohol exposure and withdrawal.
  •  
3.
  • Johansson, Sofia, et al. (författare)
  • Validation of endogenous controls for quantitative gene expression analysis : Application on brain cortices of human chronic alcoholics
  • 2007
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993 .- 1872-6240. ; 1132:1, s. 20-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-time PCR is frequently used for gene expression quantification due to its methodological sensitivity and reproducibility. The gene expression is quantified by normalization to one or more reference genes, usually beta-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPD) or to ribosomal RNA (18S). However, different environmental or pathological conditions might also influence the expression of normalizing genes, which could severely skew the interpretation of quantitative results. This study evaluates whether 16 genes frequently used as endogenous controls in expression studies, can serve as such for comparison of human brain tissues of chronic alcoholics and control subjects. The prefrontal and motor cortices that are affected differently by chronic alcohol consumption were analyzed. The reference genes that have no or small differences in expression in alcoholics and control subjects, were found to be specific for each region: beta-actin (ACTB) and ribosomal large P0 (RPLP0) for the prefrontal cortex while importin 8 (IPO8) and RNA polymerase II (POLR2A) for the motor cortex. Four out of sixteen analyzed genes demonstrated significant differences in expression between alcoholics and controls: phosphoglycerate kinase (PGK1), hypoxanthine phosphoribosyl transferase (HPRT1) and peptidylprolyl isomerase A (PPIA) in the motor cortex and beta-2-microglobulin (B2M) in the prefrontal cortex. Our study demonstrates the importance of validation of endogenous control genes prior to real-time PCR analysis of human brain tissues. Prescribed and non-prescribed drugs, pathological or environmental conditions along with alcohol abuse may differentially influence expression of reference genes.
  •  
4.
  •  
5.
  • Ossipov, Michael H., et al. (författare)
  • Control of chronic pain by the ubiquitin-proteasome system in the spinal cord
  • 2007
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 27:31, s. 8226-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain is maintained in part by long-lasting neuroplastic changes in synapses and several proteins critical for synaptic plasticity are degraded by the ubiquitin-proteasome system (UPS). Here, we show that proteasome inhibitors administered intrathecally or subcutaneously prevented the development and reversed nerve injury-induced pain behavior. They also blocked pathological pain induced by sustained administration of morphine or spinal injection of dynorphin A, an endogenous mediator of chronic pain. Proteasome inhibitors blocked mechanical allodynia and thermal hyperalgesia in all three pain models although they did not modify responses to mechanical stimuli, but partially inhibited responses to thermal stimuli in control rats. In the spinal cord, these compounds abolished the enhanced capsaicin-evoked calcitonin gene-related peptide (CGRP) release and dynorphin A upregulation, both elicited by nerve injury. Model experiments demonstrated that the inhibitors may act directly on dynorphin-producing cells, blocking dynorphin secretion. Thus, the effects of proteasome inhibitors on chronic pain were apparently mediated through several cellular mechanisms indispensable for chronic pain, including those of dynorphin A release and postsynaptic actions, and of CGRP secretion. Levels of several UPS proteins were reduced in animals with neuropathic pain, suggesting that UPS downregulation, like effects of proteasome inhibitors, counteracts the development of chronic pain. The inhibitors did not produce marked or disabling motor disturbances at doses that were used to modify chronic pain. These results suggest that the UPS is a critical intracellular regulator of pathological pain, and that UPS-mediated protein degradation is required for maintenance of chronic pain and nociceptive, but not non-nociceptive responses in normal animals.
  •  
6.
  • Ökvist, Anna, et al. (författare)
  • Neuroadaptations in human chronic alcoholics : dysregulation of the NF-κB system
  • 2007
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:9, s. e930-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-kappaB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. METHODS AND FINDINGS: Analysis of DNA-binding of NF-kappaB (p65/p50 heterodimer) and the p50 homodimer as well as NF-kappaB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant kappaB binding factor in analyzed tissues. NF-kappaB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-kappaB target DNA sites, kappaB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with kappaB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. CONCLUSIONS: We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-kappaB, when repeated over years downregulate RELA expression and NF-kappaB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of kappaB regulated genes. Alterations in expression of p50 homodimer/NF-kappaB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy