SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engblom David) ;pers:(Engström Linda)"

Sökning: WFRF:(Engblom David) > Engström Linda

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elander, Louise, et al. (författare)
  • Inducible Prostaglandin E-2 Synthesis Interacts in a Temporally Supplementary Sequence with Constitutive Prostaglandin-Synthesizing Enzymes in Creating the Hypothalamic-Pituitary-Adrenal Axis Response to Immune Challenge
  • 2009
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 29:5, s. 1404-1413
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis has been suggested to depend on prostaglandins, but the prostaglandin species and the prostaglandin-synthesizing enzymes that are responsible have not been fully identified. Here, we examined HPA axis activation in mice after genetic deletion or pharmacological inhibition of prostaglandin E-2-synthesizing enzymes, including cyclooxygenase-1 (Cox-1), Cox-2, and microsomal prostaglandin E synthase-1 (mPGES-1). After immune challenge by intraperitoneal injection of lipopolysaccharide, the rapid stress hormone responses were intact after Cox-2 inhibition and unaffected by mPGES-1 deletion, whereas unselective Cox inhibition blunted these responses, implying the involvement of Cox-1. However, mPGES-1-deficient mice showed attenuated transcriptional activation of corticotropin-releasing hormone (CRH) that was followed by attenuated plasma concentrations of adrenocorticotropic hormone and corticosterone. Cox-2 inhibition similarly blunted the delayed corticosterone response and further attenuated corticosterone release in mPGES-1 knock-out mice. The expression of the c-fos gene, an index of synaptic activation, was maintained in the paraventricular hypothalamic nucleus and its brainstem afferents both after unselective and Cox-2 selective inhibition as well as in Cox-1, Cox-2, and mPGES-1 knock-out mice. These findings point to a mechanism by which ( 1) neuronal afferent signaling via brainstem autonomic relay nuclei and downstream Cox-1-dependent prostaglandin release and ( 2) humoral, CRH transcription-dependent signaling through induced Cox-2 and mPGES-1 elicited PGE(2) synthesis, shown to occur in brain vascular cells, play distinct, but temporally supplementary roles for the stress hormone response to inflammation.
  •  
2.
  • Engblom, David, 1975-, et al. (författare)
  • Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis
  • 2003
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 6:11, s. 1137-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the febrile response in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal isomerase expressed in cytokine-sensitive brain endothelial cells. These animals showed no fever and no central prostaglandin (PG) E2 synthesis after peripheral injection of bacterial-wall lipopolysaccharide, but their pyretic capacity in response to centrally administered PGE2 was intact. Our findings identify mPGES-1 as the central switch during immune-induced pyresis and as a target for the treatment of fever and other PGE2-dependent acute phase reactions elicited by the brain.
  •  
3.
  • Engström, Linda, et al. (författare)
  • Acetaminophen reduces lipopolysaccharide-induced fever by inhibiting cyclooxygenase-2
  • 2013
  • Ingår i: Neuropharmacology. - : Elsevier. - 0028-3908 .- 1873-7064. ; 71, s. 124-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetaminophen is one of the world's most commonly used drugs to treat fever and pain, yet its mechanism of action has remained unclear. Here we tested the hypothesis that acetaminophen blocks fever through inhibition of cyclooxygenase-2 (Cox-2), by monitoring lipopolysaccharide induced fever in mice with genetic manipulations of enzymes in the prostaglandin cascade. We exploited the fact that lowered levels of a specific enzyme make the system more sensitive to any further inhibition of the same enzyme. Mice were immune challenged by an intraperitoneal injection of bacterial wall lipopolysaccharide and their body temperature recorded by telemetry. We found that mice heterozygous for Cox-2, but not for microsomal prostaglandin E synthase-1 (mPGES-1), displayed attenuated fever, indicating a rate limiting role of Cox-2. We then titrated a dose of acetaminophen that did not inhibit the lipopolysaccharide-induced fever in wild-type mice. However, when the same dose of acetaminophen was given to Cox-2 heterozygous mice, the febrile response to lipopolysaccharide was strongly attenuated, resulting in an almost normalized temperature curve, whereas no difference was seen between wild-type and heterozygous mPGES-1 mice. Furthermore, the fever to intracerebrally injected prostaglandin E2 was unaffected by acetaminophen treatment. These findings reveal that acetaminophen, similar to aspirin and other non-steroidal anti-inflammatory drugs, is antipyretic by inhibiting cyclooxygenase-2, and not by inhibiting mPGES-1 or signaling cascades downstream of prostaglandin E2.
  •  
4.
  • Engström, Linda, et al. (författare)
  • Lipopolysaccharide-Induced Fever Depends on Prostaglandin E2 Production Specifically in Brain Endothelial Cells
  • 2012
  • Ingår i: Endocrinology. - : Endocrine Society. - 0013-7227 .- 1945-7170. ; 153:10, s. 4849-4861
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune-induced prostaglandin E2 (PGE2) synthesis is critical for fever and other centrally elicited disease symptoms. The production of PGE2 depends on cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1), but the identity of the cells involved has been a matter of controversy. We generated mice expressing mPGES-1 either in cells of hematopoietic or nonhematopoietic origin. Mice lacking mPGES-1 in hematopoietic cells displayed an intact febrile response to lipopolysaccharide, associated with elevated levels of PGE2 in the cerebrospinal fluid. In contrast, mice that expressed mPGES-1 only in hematopoietic cells, although displaying elevated PGE2 levels in plasma but not in the cerebrospinal fluid, showed no febrile response to lipopolysaccharide, thus pointing to the critical role of brain-derived PGE2 for fever. Immunohistochemical stainings showed that induced cyclooxygenase-2 expression in the brain exclusively occurred in endothelial cells, and quantitative PCR analysis on brain cells isolated by flow cytometry demonstrated that mPGES-1 is induced in endothelial cells and not in vascular wall macrophages. Similar analysis on liver cells showed induced expression in macrophages and not in endothelial cells, pointing at the distinct role for brain endothelial cells in PGE2 synthesis. These results identify the brain endothelial cells as the PGE2-producing cells critical for immune-induced fever.
  •  
5.
  • Engström, Linda, et al. (författare)
  • Preproenkephalin mRNA expression in rat parabrachial neurons: relation to cells activated by systemic immune challenge
  • 2001
  • Ingår i: Neuroscience Letters. - : Elsevier Science B.V., Amsterdam.. - 0304-3940 .- 1872-7972. ; 316:3, s. 165-168
  • Tidskriftsartikel (refereegranskat)abstract
    • By using a dual-labeling immunohistochemical/in situ hybridization technique we examined if enkephalin-expressing neurons in the pontine parabrachial nucleus, a major brain stem relay for ascending visceral and homeostatic information, were activated by systemic immune challenge. While rats subjected to intravenous injection of bacterial wall lipopolysaccharide expressed dense labeling for the immediate-early gene product FOS in parts of the parabrachial nucleus that also demonstrated dense preproenkephalin expression, only a small proportion of the enkephalin-positive neurons were FOS-positive. These data indicate that enkephalins, although implicated in a variety of autonomic responses, are not primarily involved in the transmission of immune-related information from the parabrachial nucleus to its different forebrain and brain stem targets.
  •  
6.
  • Engström, Linda, et al. (författare)
  • Systemic immune challenge activates an intrinsically regulated local inflammatory circuit in the adrenal gland
  • 2008
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 149:4, s. 1436-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evidence from in vitro studies that inflammatory messengers influence the release of stress hormone via direct effects on the adrenal gland; however, the mechanisms underlying these effects in the intact organism are unknown. Here we demonstrate that systemic inflammation in rats elicited by iv injection of lipopolysaccharide results in dynamic changes in the adrenal immune cell population, implying a rapid depletion of dendritic cells in the inner cortical layer and the recruitment of immature cells to the outer layers. These changes are accompanied by an induced production of IL-1β and IL-1 receptor type 1 as well as cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in these cells, implying local cytokine-mediated prostaglandin E2 production in the adrenals, which also displayed prostaglandin E2 receptors of subtypes 1 and 3 in the cortex and medulla. The IL-1β expression was also induced by systemically administrated IL-1β and was in both cases attenuated by IL-1 receptor antagonist, consistent with an autocrine signaling loop. IL-1β similarly induced expression of cyclooxygenase-2, but the cyclooxygenase-2 expression was, in contrast, further enhanced by IL-1 receptor antagonist. These data demonstrate a mechanism by which systemic inflammatory agents activate an intrinsically regulated local signaling circuit that may influence the adrenals’ response to immune stress and may help explain the dissociation between plasma levels of ACTH and corticosteroids during chronic immune perturbations.
  •  
7.
  • Engström, Linda, et al. (författare)
  • Systemic immune challenge induces preproenkephalin gene transcription in distinct autonomic structures of the rat brain
  • 2003
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 462:4, s. 450-461
  • Tidskriftsartikel (refereegranskat)abstract
    • The involvement of enkephalins in the immune response was investigated in rats injected intravenously with interleukin-1 (2 g/kg). In situ hybridization with a riboprobe complementary to intron A of the preproenkephalin (ppENK) gene showed distinct transcriptional activation within several brain regions known to be activated by immune stimuli, including the nucleus of the solitary tract, the area postrema, the paraventricular hypothalamic nucleus, and the oval nucleus of the bed nucleus of the stria terminalis, and dual labeling confirmed that a large proportion of the intron expressing neurons co-expressed c-fos mRNA. Rats injected with saline (controls) showed little or no heteronuclear transcript in these structures. The induced signal was strongest after 1 hour but was present in some structures 30 minutes after interleukin-1 injection. At 3 hours, transcriptional activity returned to basal levels. High basal expression of the heteronuclear transcript that appeared unchanged by the immune stimulus was seen in regions not primarily involved in the immune response, such as the striatum, the olfactory tubercle, and the islands of Calleja and in the immune activated central nucleus of the amygdala. The heteronuclear transcript colocalized with ppENK mRNA, demonstrating that it occurred in enkephalinergic neurons and was not the result of alternative transcription from the ppENK gene in other cells. These results demonstrated that enkephalin transcription is induced in central autonomic neurons during immune challenge, suggesting that enkephalins are involved in the centrally orchestrated response to such stimuli.
  •  
8.
  • Ruud, Johan, et al. (författare)
  • A putative role for Cox-1 in the initiation of cancer anorexia independent of mPGES-1, PGE2 and neuronal EP4 receptors
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the so called anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PG and the cyclooxygenase (Cox) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the reduced food intake in the tumor-bearing animals was due to decreased meal frequency. Treatment with a nonselective Cox inhibitor attenuated the anorexia, and also tumor growth. However, when given at manifest anorexia, the nonselective Cox inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite the pronounced effect of nonselective Cox-inhibitors, a selective Cox-2 inhibitor had no effect on the anorexia, whereas Cox-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE2 levels in plasma - a response blocked by nonselective Cox-inhibition - but not in the cerebrospinal fluid, and there was no rise in body temperature. Neutralization of PGE2 with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1), the inducible terminal isomerase for PGE2 synthesis, affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP4 receptors selectively in the nervous system developed anorexia. These observations suggest that Cox-enzymes, most likely Cox-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE2 and neuronal EP4 signaling.
  •  
9.
  • Ruud, Johan, et al. (författare)
  • Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1
  • 2013
  • Ingår i: Brain, behavior, and immunity. - : Elsevier. - 0889-1591 .- 1090-2139. ; 29, s. 124-135
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia–cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia–cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE2 levels in plasma – a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE2-levels in the cerebrospinal fluid. Neutralization of plasma PGE2 with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP4 receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE2 and neuronal EP4 signaling.
  •  
10.
  • Shionoya, Kiseko, 1964-, et al. (författare)
  • Melanocortin-4 receptors on neurons in the parabrachial nucleus mediate inflammation-induced suppression of food-seeking behavior
  • 2023
  • Ingår i: Brain Behavior and Immunity. - : Elsevier BV. - 0889-1591 .- 1090-2139. ; 110, s. 80-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Anorexia is a common symptom during infectious and inflammatory disease. Here we examined the role of melanocortin-4 receptors (MC4Rs) in inflammation-induced anorexia. Mice with transcriptional blockage of the MC4Rs displayed the same reduction of food intake following peripheral injection of lipopolysaccharide as wild type mice but were protected against the anorexic effect of the immune challenge in a test in which fasted animals were to use olfactory cues to find a hidden cookie. By using selective virus-mediated receptor re -expression we demonstrate that the suppression of the food-seeking behavior is subserved by MC4Rs in the brain stem parabrachial nucleus, a central hub for interoceptive information involved in the regulation of food intake. Furthermore, the selective expression of MC4R in the parabrachial nucleus also attenuated the body weight increase that characterizes MC4R KO mice. These data extend on the functions of the MC4Rs and show that MC4Rs in the parabrachial nucleus are critically involved in the anorexic response to peripheral inflam-mation but also contribute to body weight homeostasis during normal conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy