SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Engman Jonas) ;pers:(Sörensen Jens)"

Search: WFRF:(Engman Jonas) > Sörensen Jens

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jonasson, My, et al. (author)
  • Development of a clinically feasible [11C]PE2I PET method for differential diagnosis of parkinsonism using reduced scan duration and automated reference region extraction.
  • 2017
  • In: American Journal of Nuclear Medicine and Molecular Imaging. - 2160-8407. ; 7:6, s. 263-274
  • Journal article (peer-reviewed)abstract
    • [11C]PE2I is a highly selective dopamine transporter PET ligand. Parametric images based on dynamic [11C]PE2I scans, showing dopamine transporter availability (BPND) and relative cerebral blood flow (R1), can be used in differential diagnosis of parkinsonism. This work aimed to investigate a shortened scan duration and automated generation of parametric images which are two prerequisites for routine clinical application. Twelve subjects with parkinsonism and seventeen healthy controls underwent 80 min dynamic [11C]PE2I PET scans. BPND and R1 images were generated using cerebellum reference region defined on a co-registered MRI, as well as a supervised cluster analysis (SVCA)-based reference. Initial 20, 30 and 40 min of the scans were extracted and images of standardized uptake value ratio (SUVR) and R1 were computed using MRI- and SVCA-based reference. Correlation was high between striatal 80 min MRI-based BPND and 40 min SVCA-based SUVR-1 (R2=0.95). High correlation was also found between R1 values in striatal and limbic regions (R2≥0.91) whereas correlation was moderate for cortical regions (R2=0.71). The results indicate that dynamic [11C]PE2I scans can be restricted to 40 min and that SVCA can be used for automatic extraction of a reference region. These outcomes will support routine applications of [11C]PE2I PET in clinical settings.
  •  
2.
  •  
3.
  •  
4.
  • Jonasson, My, et al. (author)
  • Validation of parametric methods for [(11)C]PE2I positron emission tomography
  • 2013
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 74, s. 172-178
  • Journal article (peer-reviewed)abstract
    • OBJECTIVESThe radioligand [(11)C]PE2I is highly selective for dopamine transporter (DAT) and can be used in vivo for investigation of changes in DAT concentration, progression of disease and validation of treatment using positron emission tomography (PET). DAT is an important protein for regulation of central dopamine concentration and DAT deficiency has been associated with several neurodegenerative and neuropsychiatric disorders. Accurate parametric images are a prerequisite for clinical application of [(11)C]PE2I. The purpose of this study was to evaluate different methods for producing [(11)C]PE2I parametric images, showing binding potential (BPND) and relative delivery (R1) at the voxel level, using clinical data as well as simulations.METHODSInvestigations were made in twelve subjects either with social anxiety disorder (n=6) or parkinsonian syndrome (n=6), each receiving an 80min dynamic PET scan. All subjects underwent a T1-weighted MRI scan which was co-registered to the PET images and used for definition of regions of interest using a probabilistic template (PVElab). Two basis function implementations (receptor parametric mapping: RPM, RPM2) of the simplified reference tissue model (SRTM) and three multilinear reference tissue models (MRTMo, MRTM and MRTM2) were used for computation of parametric BPND and R1 images. In addition, reference Logan and standard uptake value ratio (SUVr) were investigated. Evaluations of BPND and R1 images were performed using linear regression to compare the parametric methods to region-based analyses with SRTM and cerebellar gray matter as reference region. Accuracy and precision of each method were assessed by simulations.RESULTSCorrelation and slope of linear regression between parametric and region-based BPND and R1 values in both striatum and extra-striatal regions were optimal for RPM (R(2)=0.99 for both BPND and R1; slopes 0.99 and 0.98 for BPND and R1, respectively, in striatum). In addition, accuracy and precision were best for RPM and RPM2.CONCLUSIONThe basis function methods provided more robust estimations of the parameters compared to the other models and performed best in simulations. RPM, a basis function implementation of SRTM, is the preferred method for voxel level analysis of [(11)C]PE2I PET studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view