SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson Maria) ;pers:(Pereira Maria J 1981)"

Sökning: WFRF:(Eriksson Maria) > Pereira Maria J 1981

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ahmed, Fozia, et al. (författare)
  • Role of Estrogen and Its Receptors in Adipose Tissue Glucose Metabolism in Pre- and Postmenopausal Women
  • 2022
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Endocrine Society. - 0021-972X .- 1945-7197. ; 107:5, s. E1879-E1889
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Reduced estrogen levels in postmenopausal women predispose them to metabolic side effects, including insulin resistance and type 2 diabetes; however, the cellular mechanisms are not well understood.Objective: This work aimed to study the expression of estrogen receptors in adipose tissue from pre- and postmenopausal women and the effects of estradiol (E2) on glucose uptake of adipocytes.Methods: Subcutaneous (SAT) and visceral adipose tissue (VAT) obtained from pre- and postmenopausal women (19-51 and 46-75 years old, respectively) were used to measure gene expression of ESR1 and ESR2. SAT tissue was incubated with E2, and glucose uptake and estrogen receptor levels were measured. Polymorphisms in ESR1 and ESR2 were addressed in public databases to identify single nucleotide polymorphisms associated with metabolic traits.Results: ESR2 expression was lower in pre- vs postmenopausal women, corresponding to lower ESR1:ESR2 gene expression ratio in postmenopausal women. In premenopausal women, the expression of ESR1 was higher in VAT than in SAT. In both pre- and postmenopausal women, ESR2 expression was lower in VAT than in SAT. In late, but not pre- or early postmenopausal women, E2 reduced glucose uptake and GLUT4 protein and increased expression of ESR2. ESR1 polymorphisms were associated with weight, body fat distribution, and total cholesterol, and ESR2 polymorphisms were associated with total cholesterol and triglyceride levels and with body fat percentage.Conclusion: E2 inhibits glucose utilization in human adipocytes in late postmenopausal women. Changes in glucose utilization over time since menopause may be explained by a lower ESR1:ESR2 ratio. This can have clinical implications on the timing of estrogen treatment in postmenopausal women.
  •  
3.
  • Ferreira, Vitor, et al. (författare)
  • Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight
  • 2022
  • Ingår i: Metabolism. - : Elsevier. - 0026-0495 .- 1532-8600. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. Methods: Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPK alpha 1 in mice were also analyzed. Results: Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i. p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. Conclusion: Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
  •  
4.
  • Lundkvist, Per, et al. (författare)
  • Glucagon Levels During Short-Term SGLT2 Inhibition Are Largely Regulated by Glucose Changes in Patients With Type 2 Diabetes.
  • 2019
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 104:1, s. 193-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The mechanism mediating sodium glucose cotransporter-2 (SGLT2) inhibitor-associated increase in glucagon levels is unknown.Objective: To assess short-term effects on glucagon, other hormones, and energy substrates after SGLT2 inhibition and whether such effects are secondary to glucose lowering. The impact of adding a dipeptidyl peptidase-4 inhibitor was addressed.Design, Setting, and Patients: A phase 4, single-center, randomized, three-treatment crossover, open-label study including 15 patients with type 2 diabetes treated with metformin.Interventions: Patients received a single-dose of dapagliflozin 10 mg accompanied by the following in randomized order: isoglycemic clamp (experiment DG); saline infusion (experiment D); or saxagliptin 5 mg plus saline infusion (experiment DS). Directly after 5-hour infusions, a 2-hour oral glucose tolerance test (OGTT) was performed.Results: Glucose and insulin levels were stable in experiment DG and decreased in experiment D [P for difference (Pdiff) < 0.001]. Glucagon-to-insulin ratio (Pdiff < 0.001), and levels of glucagon (Pdiff < 0.01), nonesterified fatty acids (Pdiff < 0.01), glycerol (Pdiff < 0.01), and β-OH-butyrate (Pdiff < 0.05) were lower in DG vs D. In multivariate analysis, change in glucose level was the main predictor of change in glucagon level. In DS, glucagon and active GLP-1 levels were higher than in D, but glucose and insulin levels did not differ. During OGTT, glucose levels rose less and glucagon levels fell more in DS vs D.Conclusion: The degree of glucose lowering markedly contributed to regulation of glucagon and insulin secretion and to lipid mobilization during short-term SGLT2 inhibition.
  •  
5.
  • Pereira, Maria J., 1981-, et al. (författare)
  • CDKN2C expression in adipose tissue is reduced in type II diabetes and central obesity: impact on adipocyte differentiation and lipid storage?
  • 2022
  • Ingår i: Translational Research. - : Elsevier BV. - 1931-5244 .- 1878-1810. ; 242, s. 105-121
  • Tidskriftsartikel (refereegranskat)abstract
    • CDKN2C/p18 (Cyclin-Dependent Kinase Inhibitor 2C) is a cell growth regulator that controls cell cycle progression and has previously been associated with increased risk for type II diabetes (T2D) and reduced peripheral adipose tissue (AT) storage capacity. This study explored the role of CDKN2C in AT lipid and glucose metabolism in T2D. Expression of CDKN2C and other genes was analyzed by transcriptomics, or real-time PCR in subcutaneous AT (SAT) samples obtained from T2D and control subjects matched for sex, age and BMI and also in paired SAT and omental AT (OAT) samples. Functional studies included adipocyte glucose uptake and lipolysis rates. CRISPR/Cas9 CDKN2C gene knockdown was performed in human preadipocytes to assess adipogenesis. CDKN2C mRNA expression in SAT and OAT was reduced in T2D and obese subjects compared to controls. CDKN2C expression in SAT was inversely correlated with measures of hyperglycemia, insulin resistance and visceral adiposity and positively correlated with expression of genes in several metabolic pathways, including insulin signaling and fatty acid and carbohydrate metabolism. CDKN2C protein was mainly expressed in adipocytes compared to stromal vascular cells, and its gene and protein expression was up-regulated during adipocyte differentiation. Knockdown of CDKN2C did not affect the percentage of differentiating cells compared to wild type cultures. However, CDKN2C knockdown cultures had significantly lower expression of differentiation markers CEBPA, ADIPOQ and FASN and transiently reduced lipid accumulation per adipocyte during differentiation. Our findings suggest that adipose CDKN2C expression might be reduced as a consequence of insulin resistance and obesity, and this can further contribute to impairment of SAT lipid storage. © 2021 The Authors
  •  
6.
  •  
7.
  • Pereira, Maria J, 1981, et al. (författare)
  • The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue.
  • 2013
  • Ingår i: Molecular and cellular endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 365:2, s. 260-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown. We explored IAs effects on lipolysis, lipid storage and expression of genes involved on lipid metabolism in isolated human adipocytes and/or adipose tissue obtained via subcutaneous and omental fat biopsies. CsA, tacrolimus and rapamycin increased isoproterenol-stimulated lipolysis and inhibited lipid storage by 20-35% and enhanced isoproterenol-stimulated hormone-sensitive lipase Ser552 phosphorylation. Rapamycin also increased basal lipolysis (∼20%) and impaired insulin's antilipolytic effect. Rapamycin, down-regulated the gene expression of perilipin, sterol regulatory element-binding protein 1 (SREBP1) and lipin 1, while tacrolimus down-regulated CD36 and aP2 gene expression. All three IAs increased IL-6 gene expression and secretion, but not expression and secretion of TNF-α or adiponectin. These findings suggest that CsA, tacrolimus and rapamycin enhance lipolysis, inhibit lipid storage and expression of lipogenic genes in adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.
  •  
8.
  • Sidibeh, Cherno O., et al. (författare)
  • Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance
  • 2017
  • Ingår i: Endocrine. - : Springer Science and Business Media LLC. - 1355-008X .- 1559-0100. ; 55:3, s. 839-852
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.
  •  
9.
  • Taube, Magdalena, et al. (författare)
  • Evaluation of reference genes for gene expression studies in human brown adipose tissue.
  • 2015
  • Ingår i: Adipocyte. - : Informa UK Limited. - 2162-3945 .- 2162-397X. ; 4:4, s. 280-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT.
  •  
10.
  • Vranic, Milica, et al. (författare)
  • Subcutaneous adipose tissue dopamine D2 receptor expression is increased in prediabetes and T2D
  • 2024
  • Ingår i: Endocrine. - : Springer. - 1355-008X .- 1559-0100. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo evaluate the dopaminergic signaling in human adipose tissue in the context of obesity and type 2 diabetes (T2D) and potential direct implications in adipose tissue metabolism.MethodsmRNA and protein expression of dopamine receptors D1 and D2 (DRD1 and DRD2) were determined in subcutaneous adipose tissue from subjects without or with T2D and with different body weight, and correlated with markers of obesity, hyperglycemia, and insulin resistance. Glucose uptake and lipolysis were measured in adipocytes ex vivo following short-term exposure to dopamine, DRD1 receptor agonist (SKF81297), or DRD2 receptor agonist (bromocriptine).ResultsDRD1 and DRD2 gene expression in subcutaneous adipose tissue correlated positively with clinical markers of insulin resistance (e.g. HOMA-IR, insulin, and triglycerides) and central obesity in subjects without T2D. Protein expression of DRD2 in subcutaneous adipose tissue, but not DRD1, is higher in subjects with impaired fasting glucose and T2D and correlated positively with hyperglycemia, HbA1c, and glucose AUC, independent of obesity status. DRD1 and DRD2 proteins were mainly expressed in adipocytes, compared to stromal vascular cells. Dopamine and dopaminergic agonists did not affect adipocyte glucose uptake ex vivo, but DRD1 and DRD2 agonist treatment inhibited isoproterenol-stimulated lipolysis.ConclusionThe results suggest that protein expression of DRD2 in subcutaneous adipose tissue is up-regulated with hyperglycemia and T2D. Whether DRD2 protein levels contribute to T2D development or occur as a secondary compensatory mechanism needs further investigation. Additionally, dopamine receptor agonists inhibit adipocyte beta-adrenergic stimulation of lipolysis, which might contribute to the beneficial effects in lipid metabolism as observed in patients taking bromocriptine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73
Typ av publikation
tidskriftsartikel (65)
annan publikation (4)
doktorsavhandling (3)
konferensbidrag (1)
Typ av innehåll
refereegranskat (57)
övrigt vetenskapligt/konstnärligt (16)
Författare/redaktör
Pereira, Maria J., 1 ... (72)
Eriksson, Jan (34)
Eriksson, Jan W. (32)
Kamble, Prasad G. (23)
Katsogiannos, Petros (14)
Kullberg, Joel, 1979 ... (13)
visa fler...
Hetty, Susanne, PhD, ... (13)
Lundkvist, Per (13)
Almby, Kristina E. (11)
Sundbom, Magnus (10)
Ahmed, Fozia (10)
Fanni, Giovanni (10)
Sarsenbayeva, Assel (10)
Vranic, Milica (9)
Lundqvist, Martin H. (9)
Ahlström, Håkan, 195 ... (8)
Svensson, Maria K (8)
Skrtic, Stanko, 1970 (7)
Boersma, Greta J. (7)
Skrtic, S. (7)
Kristofi, Robin (6)
Eriksson, Jan W, 195 ... (6)
Castillejo-López, Ca ... (6)
Fall, Tove, 1979- (5)
Visvanathar, Robin (5)
Wiklund, Urban (4)
Abrahamsson, Niclas, ... (4)
Johansson, Emil (4)
Cavalli, Marco (4)
Risérus, Ulf, 1967- (4)
Katsogiannos, Petros ... (4)
Lubberink, Mark (4)
Komorowski, Jan (4)
Wadelius, Claes, 195 ... (4)
Pan, Gang (4)
Sidibeh, Cherno O. (4)
Johnsson, Eva (3)
Svensson, Per-Arne, ... (3)
Strand, Robin, 1978- (3)
Johnsson, E (3)
Karlsson, Anders, 19 ... (3)
Gustafsson, Stefan (3)
Lau Börjesson, Joey, ... (3)
Rizell, Magnus, 1963 (3)
Palming, Jenny, 1975 (3)
Ingelsson, Erik, 197 ... (3)
Diamanti, Klev, 1987 ... (3)
Ekström, Simon, 1991 ... (3)
Jui Nandi, Bipasha (3)
Dipta, Priya (3)
visa färre...
Lärosäte
Uppsala universitet (72)
Göteborgs universitet (15)
Umeå universitet (4)
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (73)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (69)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy