SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson Maria 1969 ) ;pers:(Åberg Maria A I 1972)"

Sökning: WFRF:(Eriksson Maria 1969 ) > Åberg Maria A I 1972

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnson, Magnus S.C. 1969, et al. (författare)
  • Interaction of scavenger receptor class B type I with peroxisomal targeting receptor Pex5p.
  • 2003
  • Ingår i: Biochemical and biophysical research communications. - 0006-291X. ; 312:4, s. 1325-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Scavenger receptor class B type I (SR-BI) is an HDL receptor that mediates selective HDL lipid uptake. Peroxisomes play an important role in lipid metabolism and peroxisomal targeting signal type 1 (PTS1)-containing proteins are translocated to peroxisomes by the peroxisomal targeting import receptor, Pex5p. We have previously identified a PTS1 motif in the intracellular domain of rat SR-BI. Here, we examine the possible interaction between Pex5p and SR-BI. Expression of a Flag-tagged intracellular domain of SR-BI resulted in translocation to the peroxisome as demonstrated by double labeling with anti-Flag IgG and anti-catalase IgG analyzed by confocal microscopy. Immunoprecipitation experiments with anti-SR-BI antibody showed that Pex5p co-precipitated with SR-BI. However, when an antibody against Pex5p was used for immunoprecipitation, only the 57kDa, non-glycosylated form, of SR-BI co-precipitated. We conclude that the PTS1 domain of SR-BI is functional and can mediate peroxisomal interaction via Pex5p, in vitro.
  •  
2.
  • Åberg, N David, 1970, et al. (författare)
  • Insulin-like growth factor-I increases astrocyte intercellular gap junctional communication and connexin43 expression in vitro.
  • 2003
  • Ingår i: Journal of neuroscience research. - : Wiley. - 0360-4012. ; 74:1, s. 12-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Connexin43 (cx43) forms gap junctions in astrocytes, and these gap junctions mediate intercellular communication by providing transport of low-molecular-weight metabolites and ions. We have recently shown that systemic growth hormone increases cx43 in the brain. One possibility was that local brain insulin-like growth factor-I (IGF-I) could mediate the effect by acting directly on astrocytes. In the present study, we examined the effects of direct application of recombinant human IGF-I (rhIGF-I) on astrocytes in primary culture concerning cx43 protein expression and gap junctional communication (GJC). After 24 hr of stimulation with rhIGF-I under serum-free conditions, the GJC and cx43 protein were analyzed. Administration of 30 ng/ml rhIGF-I increased the GJC and the abundance of cx43 protein. Cell proliferation of the astrocytes was not significantly increased by rhIGF-I at this concentration. However, a higher concentration of rhIGF-I (150 ng/ml) had no effect on GJC/cx43 but increased cell proliferation. Because of the important modulatory role of IGF binding proteins (IGFBPs) on IGF-I action, we analyzed IGFBPs in conditioned media. In cultures with a low abundance of IGFBPs (especially IGFBP-2), the GJC response to 30 ng/ml rhIGF-I was 81%, compared with the average of 25%. Finally, as a control, insulin was given in equimolar concentrations. However, GJC was not affected, which suggests that rhIGF-I acted via IGF-I receptors. In summary, the data show that rhIGF-I may increase GJC/cx43, whereas a higher concentration of rhIGF-I--at which stimulation of proliferation occurred--did not affect GJC/cx43. Furthermore, IGFBP-2 appeared to modulate the action of rhIGF-I on GJC in astrocytes by a paracrine mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy