SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson N.) ;lar1:(ri)"

Sökning: WFRF:(Eriksson N.) > RISE

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kaiser, M., et al. (författare)
  • VEDLIoT: Very Efficient Deep Learning in IoT
  • 2022
  • Ingår i: Proceedings of the 2022 Design, Automation and Test in Europe Conference and Exhibition, DATE 2022. - : IEEE. - 9783981926361
  • Konferensbidrag (refereegranskat)abstract
    • The VEDLIoT project targets the development of energy-efficient Deep Learning for distributed AIoT applications. A holistic approach is used to optimize algorithms while also dealing with safety and security challenges. The approach is based on a modular and scalable cognitive IoT hardware platform. Using modular microserver technology enables the user to configure the hardware to satisfy a wide range of applications. VEDLIoT offers a complete design flow for Next-Generation IoT devices required for collaboratively solving complex Deep Learning applications across distributed systems. The methods are tested on various use-cases ranging from Smart Home to Automotive and Industrial IoT appliances. VEDLIoT is an H2020 EU project which started in November 2020. It is currently in an intermediate stage with the first results available.
  •  
3.
  •  
4.
  • Lind, Ulrika, et al. (författare)
  • Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. © 2017 Lind et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
5.
  • Mottola, Luca, et al. (författare)
  • MakeSense : Simplifying the Integration of Wireless Sensor Networks into Business Processes
  • 2019
  • Ingår i: IEEE Transactions on Software Engineering. - : Institute of Electrical and Electronics Engineers Inc.. - 0098-5589 .- 1939-3520. ; 45:6, s. 576-596
  • Tidskriftsartikel (refereegranskat)abstract
    • A wide gap exists between the state of the art in developing Wireless Sensor Network (WSN) software and current practices concerning the design, execution, and maintenance of business processes. WSN software is most often developed based on low-level OS abstractions, whereas business process development leverages high-level languages and tools. This state of affairs places WSNs at the fringe of industry. The makeSense system addresses this problem by simplifying the integration of WSNs into business processes. Developers use BPMN models extended with WSN-specific constructs to specify the application behavior across both traditional business process execution environments and the WSN itself, which is to be equipped with application-specific software. We compile these models into a high-level intermediate language-Also directly usable by WSN developers-And then into OS-specific deployment-ready binaries. Key to this process is the notion of meta-Abstraction, which we define to capture fundamental patterns of interaction with and within the WSN. The concrete realization of meta-Abstractions is application-specific; developers tailor the system configuration by selecting concrete abstractions out of the existing codebase or by providing their own. Our evaluation of makeSense shows that i) users perceive our approach as a significant advance over the state of the art, providing evidence of the increased developer productivity when using makeSense; ii) in large-scale simulations, our prototype exhibits an acceptable system overhead and good scaling properties, demonstrating the general applicability of makeSense; and, iii) our prototype-including the complete tool-chain and underlying system support-sustains a real-world deployment where estimates by domain specialists indicate the potential for drastic reductions in the total cost of ownership compared to wired and conventional WSN-based solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy