SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson P) ;lar1:(slu)"

Sökning: WFRF:(Eriksson P) > Sveriges Lantbruksuniversitet

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
2.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Donadi, Serena, et al. (författare)
  • A cross-scale trophic cascade from large predatory fish to algae in coastal ecosystems
  • 2017
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 284:1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic cascades occur in many ecosystems, but the factors regulating them are still elusive. We suggest that an overlooked factor is that trophic interactions (TIs) are often scale-dependent and possibly interact across spatial scales. To explore the role of spatial scale for trophic cascades, and particularly the occurrence of cross-scale interactions (CSIs), we collected and analysed food-web data from 139 stations across 32 bays in the Baltic Sea. We found evidence of a four-level trophic cascade linking TIs across two spatial scales: at bay scale, piscivores (perch and pike) controlled mesopredators (three-spined stickleback), which in turn negatively affected epifaunal grazers. At station scale (within bays), grazers on average suppressed epiphytic algae, and indirectly benefitted habitat-forming vegetation. Moreover, the direction and strength of the grazer-algae relationship at station scale depended on the piscivore biomass at bay scale, indicating a cross-scale interaction effect, potentially caused by a shift in grazer assemblage composition. In summary, the trophic cascade from piscivores to algae appears to involve TIs that occur at, but also interact across, different spatial scales. Considering scale-dependence in general, and CSIs in particular, could therefore enhance our understanding of trophic cascades.
  •  
4.
  • Yanos, Casey L., et al. (författare)
  • Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes
  • 2021
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 11:18, s. 12485-12496
  • Tidskriftsartikel (refereegranskat)abstract
    • Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor-completely plated and incompletely plated-are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near-shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat-forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.
  •  
5.
  • Austin, Åsa N., et al. (författare)
  • Synergistic Effects of Rooted Aquatic Vegetation and Drift Wrack on Ecosystem Multifunctionality
  • 2021
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 24:7, s. 1670-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem multifunctionality is an increasingly popular concept used to approximate multifaceted ecosystem functioning, which in turn may help advance ecosystem-based management. However, while experimental studies have shown a positive effect of diversity on multifunctionality, observational studies from natural systems-particularly aquatic-are scarce. Here, we tested the relative importance of species richness and cover of rooted aquatic vegetation, as well as cover of the loose-lying form of the macroalgae bladderwrack (Fucus vesiculosus), for ecosystem multifunctionality in shallow bays along the western Baltic Sea coast. We estimated multifunctionality based on four indicators of functions that support ecosystem services: recruitment of large predatory fish, grazer biomass, inverted 'nuisance' algal biomass, and water clarity. Piecewise path analysis showed that multifunctionality was driven by high cover of rooted aquatic vegetation and bladderwrack, particularly when the two co-occurred. This synergistic effect was nearly three times as strong as a negative effect of land-derived nitrogen loading. Species richness of aquatic vegetation indirectly benefitted multifunctionality by increasing vegetation cover. Meanwhile, high bladderwrack cover tended to decrease vegetation species richness, indicating that bladderwrack has both positive and negative effects on multifunctionality. We conclude that managing for dense and diverse vegetation assemblages may mitigate effects of anthropogenic pressures (for example, eutrophication) and support healthy coastal ecosystems that provide a range of benefits. To balance the exploitation of coastal ecosystems and maintain their multiple processes and services, management therefore needs to go beyond estimation of vegetation cover and consider the diversity and functional types of aquatic vegetation.
  •  
6.
  • De Frenne, P, et al. (författare)
  • Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L.
  • 2010
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 259:4, s. 809-817
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming is already influencing plant migration in different parts of the world.Numerous modelshave been developed to forecast future plant distributions. Few studies, however, have investigated thepotential effect of warming on the reproductive output of plants. Understorey forest herbs in particular,have received little attention in the debate on climate change impacts.This study focuses on the effect of temperature on sexual reproductive output (number of seeds, seedmass, germination percentage and seedling mass) of Anemone nemorosa L., a model species for slowcolonizing herbaceous forest plants. We sampled seeds of A. nemorosa in populations along a 2400 kmlatitudinal gradient from northern France to northern Sweden during three growing seasons (2005, 2006and 2008). This study design allowed us to isolate the effects of accumulated temperature (GrowingDegree Hours; GDH) from latitude and the local abiotic and biotic environment. Germination and seedsowing trials were performed in incubators, a greenhouse and under field conditions in a forest. Finally,we disentangled correlations between the different reproductive traits of A. nemorosa along thelatitudinal gradient.We found a clear positive relationship between accumulated temperature and seed and seedlingtraits: reproductive output of A. nemorosa improved with increasing GDH along the latitudinal gradient.Seedmass and seedling mass, for instance, increased by 9.7% and 10.4%, respectively, for every 1000 8C hincrease in GDH.Wealso derived strong correlations between several seed and seedling traits both underfield conditions and in incubators. Our results indicate that seed mass, incubator-based germinationpercentage (Germ%Inc) and the output of germinable seeds (product of number of seeds and Germ%Incdivided by 100) from plants grown along a latitudinal gradient (i.e. at different temperature regimes)provide valuable proxies to parameterize key population processes in models.We conclude that (1) climate warming may have a pronounced positive impact on sexualreproduction of A. nemorosa and (2) climate models forecasting plant distributions would benefit fromincluding the temperature sensitivity of key seed traits and population processes.
  •  
7.
  • De Frenne, P, et al. (författare)
  • Unraveling the effects of temperature, latitude and local environment on the reproduction of six forest herbs.
  • 2009
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 18:6, s. 641-651
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To investigate the effect of temperature, latitude and local environment on the reproductive traits of widespread perennial forest herbs to better understand the potential impacts of rising temperatures on their population dynamics and colonization capacities.Location Six regions along a latitudinal gradient from France to Sweden.Methods Within each region, we collected data from three to five populations of up to six species. For each species, several variables were recorded in each region (temperature, latitude) and population (local abiotic and biotic environmental variables), and seed production and germination were estimated. Resource investment in reproduction (RIR) was quantified as seed number × seed mass, while germinable seed output (GSO) was expressed as seed number × germination percentage. We performed linear regression and mixed effect models to investigate the effects of temperature (growing degree hours), latitude and local abiotic and biotic environment on RIR and GSO.Results Temperature and latitude explained most of the variation in RIR and GSO for early flowering species with a northerly distribution range edge (Anemone nemorosa, Paris quadrifolia and Oxalis acetosella). Reproduction of the more southerly distributed species (Brachypodium sylvaticum, Circaea lutetiana and Primula elatior), in contrast, was independent of temperature/latitude. In the late summer species, B. sylvaticum and C. lutetiana, variation in RIR and GSO was best explained by local environmental variables, while none of the investigated variables appeared to be related to reproduction in P. elatior.Main conclusions We showed that reproduction of only two early flowering, northerly distributed species was related to temperature. This suggests that the potential reproductive response of forest herbs to climate warming partly depends on their phenology and distribution, but also that the response is to some extent species dependent. These findings should be taken into account when predictions about future shifts in distribution range are made.
  •  
8.
  • Donadi, Serena, et al. (författare)
  • Density-dependent positive feedbacks buffer aquatic plants from interactive effects of eutrophication and predator loss
  • 2018
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 99:11, s. 2515-2524
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-facilitation allows populations to persist under disturbance by ameliorating experienced stress. In coastal ecosystems, eutrophication and declines of large predatory fish are two common disturbances that can synergistically impact habitat-forming plants by benefitting ephemeral algae. In theory, density-dependent intraspecific plant facilitation could weaken such effects by ameliorating the amount of experienced stress. Here, we tested whether and how shoot density of a common aquatic plant (Myriophyllum spicatum) alters the response of individual plants to eutrophication and exclusion of large predatory fish, using a 12-week cage experiment in the field. Results showed that high plant density benefitted individual plant performance, but only when the two stressors were combined. Epiphytic algal biomass per plant more than doubled in cages that excluded large predatory fish, indicative of a trophic cascade. Moreover, in this treatment, individual shoot biomass, as well as number of branches, increased with density when nutrients were added, but decreased with density at ambient nutrient levels. In contrast, in open cages that large predatory fish could access, epiphytic algal biomass was low and individual plant biomass and number of branches were unaffected by plant density and eutrophication. Plant performance generally decreased under fertilization, suggesting stressful conditions. Together, these results suggest that intraspecific plant facilitation occurred only when large fish exclusion (causing high epiphyte load) was accompanied by fertilization, and that intraspecific competition instead prevailed when no nutrients were added. As coastal ecosystems are increasingly exposed to multiple and often interacting stressors such as eutrophication and declines of large predatory fish, maintaining high plant density is important for ecosystem-based management.
  •  
9.
  •  
10.
  • Eklöf, Johan S., et al. (författare)
  • A spatial regime shift from predator to prey dominance in a large coastal ecosystem
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Regime shifts in ecosystem structure and processes are typically studied from a temporal perspective. Yet, theory predicts that in large ecosystems with environmental gradients, shifts should start locally and gradually spread through space. Here we empirically document a spatially propagating shift in the trophic structure of a large aquatic ecosystem, from dominance of large predatory fish (perch, pike) to the small prey fish, the three-spined stickleback. Fish surveys in 486 shallow bays along the 1200 km western Baltic Sea coast during 1979–2017 show that the shift started in wave-exposed archipelago areas near the open sea, but gradually spread towards the wave-sheltered mainland coast. Ecosystem surveys in 32 bays in 2014 show that stickleback predation on juvenile predators (predator–prey reversal) generates a feedback mechanism that appears to reinforce the shift. In summary, managers must account for spatial heterogeneity and dispersal to better predict, detect and confront regime shifts within large ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (22)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bergström, Ulf (8)
Brunet, Jörg (4)
Sundblad, Göran (3)
White, D. (1)
Korsgren, Olle (1)
Skrtic, Stanko, 1970 (1)
visa fler...
Persson, Ingmar (1)
Undeland, Ingrid, 19 ... (1)
Rothhaupt, Karl-Otto (1)
Sörhede-Winzell, Mar ... (1)
Halldin, C (1)
Johannisson, Anders (1)
Weigend, Maximilian (1)
Lind, Lars (1)
Andersson, Göran (1)
Lindblad-Toh, Kersti ... (1)
Müller, Jörg (1)
Eriksson, O (1)
Sundell, Kristina, 1 ... (1)
Winkler, M (1)
Mandl, Thomas (1)
Nordmark, Gunnel (1)
Dick, J. (1)
De Frenne, Pieter (1)
Hermy, Martin (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Chen, D (1)
Farrell, Katharine N ... (1)
Wahren-Herlenius, Ma ... (1)
Olsson, Jens (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Theander, Elke (1)
Rönnblom, Lars (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Eriksson, P (1)
Andersson, Maria (1)
Lukic, Marko (1)
Ekberg, Christian, 1 ... (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Larsson, A (1)
visa färre...
Lärosäte
Stockholms universitet (13)
Göteborgs universitet (4)
Umeå universitet (4)
Karolinska Institutet (4)
Uppsala universitet (3)
visa fler...
Chalmers tekniska högskola (3)
Linköpings universitet (2)
Mittuniversitetet (2)
Kungliga Tekniska Högskolan (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Lantbruksvetenskap (7)
Teknik (2)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy