SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Erlandsson K) ;pers:(Miller T.)"

Sökning: WFRF:(Erlandsson K) > Miller T.

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrés, E., et al. (författare)
  • Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice
  • 2001
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 410:6827, s. 441-443
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.
  •  
2.
  • Andrés, E., et al. (författare)
  • Recent results from AMANDA
  • 2001
  • Ingår i: International Journal of Modern Physics A. - 0217-751X .- 1793-656X. ; 16:1C, s. 1013-1015
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope.
  •  
3.
  • Andres, E., et al. (författare)
  • Results from the AMANDA high energy neutrino detector
  • 2000
  • Ingår i: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 91:1-3, s. 423-430
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For Eμ > 10 TeV, the detector exceeds 10,000 m2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the detector. The absolute pointing accuracy and angular resolution has been confirmed by the analysis of coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favorably to existing limits for sources in the Southern sky. We also present the current status of the searches for high energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the earth.
  •  
4.
  • Andres, E., et al. (författare)
  • Selected recent results from AMANDA
  • 2001
  • Ingår i: ICHEP 2000. Proceedings of the 30th International Conference on High Energy Physics. - : World Scientific. ; , s. 965-968
  • Konferensbidrag (refereegranskat)abstract
    • We present a selection of results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope. Studies of nearly vertical upgoing muons limit the available parameter space for WIMP dark matter under the assumption that WIMPS are trapped in the earth's gravitational potential well and annihilate with one another near the earth's center.
  •  
5.
  • Karle, A., et al. (författare)
  • Observation of high energy atmospheric neutrinos with AMANDA
  • 2000
  • Ingår i: AIP Conference Proceedings. - : American Institute of Physics (AIP). ; , s. 823-827
  • Konferensbidrag (refereegranskat)abstract
    • In 1997 the Antarctic Muon and Neutrino Detector Array (AMANDA) started operating with 10 strings. In an analysis of data taken during the first year of operation 188 atmospheric neutrino candidates were found. Their zenith angle distribution agrees with expectations based on Monte Carlo simulations. A preliminary upper limit is given on a diffuse flux of high energy neutrinos of astrophysical origin.
  •  
6.
  •  
7.
  • Miller, T. C., et al. (författare)
  • Particle astrophysics in antarctica
  • 1996
  • Ingår i: International School of Cosmic Ray Astrophysics: 10th Course: Toward the Millennium in Astrophysics: Problems and Prospects 16-26 Jun 1996. Erice, Italy. ; , s. 157-166
  • Konferensbidrag (refereegranskat)
  •  
8.
  • Askebjer, P., et al. (författare)
  • AMANDA : status report from the 1993-94 campaign and optical properties of the South Pole ice
  • 1995
  • Ingår i: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 38:1-3, s. 287-292
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first results of the AMANDA detector. During the antarctic summer 1993-94 four strings were deployed between 0.8 an 1 km depth, each equipped with 20 photomultiplier tubes (PMTs). A laser source was used to investigate the optical properties of the ice in situ. We find that the ice is intrinsically extremely transparent. The measured absorption length is 59 ± 3 m, i.e. comparable with the quality of the ultra-pure water used in the IMB and Kamiokande proton-decay and neutrino experiments [1,2] and more than two times longer than the best value reported for laboratory ice [3]. Due to a residual density of air bubbles at these depths, the motion of photons in the medium is randomized. For spherical, smooth bubbles we find that, at 1 km depth, the average distance between collisions is about 25 cm. The measured inverse scattering length on bubbles decreases linearly with increasing depth in the volume of ice investigated. © 1995 Elsevier Science B.V. All rights reserved.
  •  
9.
  • ASKEBJER, P, et al. (författare)
  • AMANDA - STATUS-REPORT FROM THE 1993-94 CAMPAIGN AND OPTICAL-PROPERTIES OF THE SOUTH-POLE ICE
  • 1995
  • Ingår i: NUCLEAR PHYSICS B. - : ELSEVIER SCIENCE BV. - 0550-3213. ; , s. 287-292
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We report the first results of the AMANDA detector. During the antarctic summer 1993-94 four strings were deployed between 0.8 an 1 km depth, each equipped with 20 photomultiplier tubes (PMTs). A laser source was used to investigate the optical properties
  •  
10.
  • Askebjer, P., et al. (författare)
  • On the age vs depth and optical clarity of deep ice at South Pole
  • 1995
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 41:139, s. 445-454
  • Tidskriftsartikel (refereegranskat)abstract
    • The first four strings of phototubes for the AMANDA high-energy neutrino observatory are now frozen in place at a depth of 800 to 1000 m in ice at the South Pole. During the 1995-96 season an additional six strings will be deployed at greater depths. Provided absorption, scattering, and refraction of visible light are sufficiently small, the trajectory of a muon into which a neutrino converts can be determined by using the array of phototubes to measure the arrival times of \v{C}erenkov light emitted by the muon. To help in deciding on the depth for implantation of the six new strings, we discuss models of age vs depth for South Pole ice, we estimate mean free paths for scattering from bubbles and dust as a function of depth, and we assess distortion of light paths due to refraction at crystal boundaries and interfaces between air-hydrate inclusions and normal ice. We conclude that the depth interval 1600 to 1800 m will be suitably transparent for the next six AMANDA strings and, moreover, that the interval 1600 to 2100 m will be suitably transparent for a future 1-km 3   observatory except possibly in a region a few tens of meters thick at a depth corresponding to a peak in the dust concentration at 60 kyr BP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy